import bisect import random from math import frexp as _frexp, floor as _floor, fabs as _fabs, erf as _erf from math import gcd as _gcd, exp as _exp, log as _log, sqrt as _sqrt, tau as _tau, hypot as _hypot class StatisticsError: _hdr: ExcHeader def __init__(self): self._hdr = ('StatisticsError', '', '', '', 0, 0) def __init__(self, message: str): self._hdr = ('StatisticsError', message, '', '', 0, 0) @property def message(self): return self._hdr.msg def median[T](data: List[T]) -> float: """ Return the median (middle value) of numeric data. When the number of data points is odd, return the middle data point. When the number of data points is even, the median is interpolated by taking the average of the two middle values """ data = sorted(data) n = len(data) if n == 0: raise StatisticsError("no median for empty data") if n%2 == 1: return float(data[n//2]) else: i = n//2 return (data[i - 1] + data[i]) / 2 def median_low[T](data: List[T]) -> float: """ Return the low median of numeric data. When the number of data points is odd, the middle value is returned. When it is even, the smaller of the two middle values is returned. """ data = sorted(data) n = len(data) if n == 0: raise StatisticsError("no median for empty data") if n%2 == 1: return float(data[n//2]) else: return float(data[n//2 -1]) def median_high[T](data: List[T]) -> float: """ Return the high median of data. When the number of data points is odd, the middle value is returned. When it is even, the larger of the two middle values is returned. """ data = sorted(data) n = len(data) if n == 0: raise StatisticsError("no median for empty data") return float(data[n//2]) def _find_lteq[T](a: List[T], x: float): """ Locate the leftmost value exactly equal to x """ i = bisect.bisect_left(a, x) if i != len(a) and a[i] == x: return i assert False def _find_rteq[T](a: List[T], l: int, x: float): """ Locate the rightmost value exactly equal to x """ i = bisect.bisect_right(a, x, lo=l) if i != (len(a)+1) and a[i-1] == x: return i-1 assert False def median_grouped[T,S=int](data: List[T], interval: S = 1) -> float: """ Return the 50th percentile (median) of grouped continuous data. """ data = sorted(data) n = len(data) if n == 0: raise StatisticsError("no median for empty data") elif n == 1: return float(data[0]) # Find the value at the midpoint. x = float(data[n//2]) L = x - float(interval)/2 # The lower limit of the median interval. # Find the position of leftmost occurrence of x in data l1 = _find_lteq(data, x) # Find the position of rightmost occurrence of x in data[l1...len(data)] # Assuming always l1 <= l2 l2 = _find_rteq(data, l1, x) cf = l1 f = l2 - l1 + 1 return L + interval*(n/2 - cf)/f def mode[T](data: List[T]) -> T: """ Return the most common data point from discrete or nominal data. """ counter = 0 elem = data[0] for i in data: curr_frequency = data.count(i) if curr_frequency > counter: counter = curr_frequency elem = i return elem def multimode[T](data: List[T]): """ Return a list of the most frequently occurring values. Will return more than one result if there are multiple modes or an empty list if *data* is empty. """ elem = data[0] counter = data.count(elem) li = sorted(data) mulmode = List[T]() for i in li: curr_frequency = data.count(i) if curr_frequency > counter: mulmode = List[T]() mulmode.append(i) counter = curr_frequency elif curr_frequency == counter and i not in mulmode: mulmode.append(i) return mulmode def quantiles[T](data: List[T], n: int = 4, method: str = 'exclusive') -> List[float]: """ Divide *data* into *n* continuous intervals with equal probability. Returns a list of (n - 1) cut points separating the intervals. Set *n* to 4 for quartiles (the default). Set *n* to 10 for deciles. Set *n* to 100 for percentiles which gives the 99 cuts points that separate *data* in to 100 equal sized groups. The *data* can be any iterable containing sample. The cut points are linearly interpolated between data points. If *method* is set to *inclusive*, *data* is treated as population data. The minimum value is treated as the 0th percentile and the maximum value is treated as the 100th percentile. """ if n < 1: raise StatisticsError('n must be at least 1') data = sorted(data) ld = len(data) if ld < 2: raise StatisticsError('must have at least two data points') if method == 'inclusive': m = ld - 1 result = List[float]() for i in range(1, n): j = i * m // n delta = (i * m) - (j * n) interpolated = (data[j] * (n - delta) + data[j+1] * delta) / n result.append(interpolated) return result if method == 'exclusive': m = ld + 1 result = List[float]() for i in range(1, n): j = i * m // n # rescale i to m/n j = 1 if j < 1 else ld-1 if j > ld-1 else j # clamp to 1 .. ld-1 delta = (i * m) - (j * n) # exact integer math interpolated = (data[j-1] * (n - delta) + data[j] * delta) / n result.append(interpolated) return result raise ValueError(f'Unknown method: {method}') def _lcm(x: int, y: int): """ Returns the lowest common multiple bewteen x and y """ greater = 0 if x > y: greater = x else: greater = y while True: if greater % x == 0 and greater % y == 0: lcm = greater return lcm greater += 1 def _sum(data: List[float]) -> float: """ Return a high-precision sum of the given numeric data as a fraction, together with the type to be converted to and the count of items. If optional argument ``start`` is given, it is added to the total. If ``data`` is empty, ``start`` (defaulting to 0) is returned. TODO/CAVEATS - The start argument should default to 0 or 0.0 - Assumes input is floats """ # Neumaier sum # https://en.wikipedia.org/wiki/Kahan_summation_algorithm#Further_enhancements # https://www.mat.univie.ac.at/~neum/scan/01.pdf (German) s = 0.0 c = 0.0 i = 0 N = len(data) while i < N: x = data[i] t = s + x if abs(s) >= abs(x): c += (s - t) + x else: c += (x - t) + s s = t i += 1 return s + c def mean(data: List[float]) -> float: """ Return the sample arithmetic mean of data. TODO/CAVEATS - Assumes input is floats - Does not address NAN or INF """ n = len(data) if n < 1: raise StatisticsError('mean requires at least one data point') total = _sum(data) return total/n ''' def fmean(data: List[float]) -> float: """ Convert data to floats and compute the arithmetic mean. TODO/CAVEATS @jordan- fsum is not implemented in math.seq yet and the above mean(data) deals with only floats. Thus this function is passed for now. """ pass ''' def geometric_mean(data: List[float]) -> float: """ Convert data to floats and compute the geometric mean. Raises a StatisticsError if the input dataset is empty, TODO/CAVEATS: - Assumes input is a list of floats - Uses mean instead of fmean for now - Does not handle data that contains a zero, or if it contains a negative value. """ if len(data) < 1: raise StatisticsError("geometric mean requires a non-empty dataset") return _exp(mean(list(map(_log, data)))) def _fail_neg(values: List[float], errmsg: str): """ Iterate over values, failing if any are less than zero. """ for x in values: if x < 0: raise StatisticsError(errmsg) yield x def harmonic_mean(data: List[float]) -> float: """ Return the harmonic mean of data. The harmonic mean, sometimes called the subcontrary mean, is the reciprocal of the arithmetic mean of the reciprocals of the data, and is often appropriate when averaging quantities which are rates or ratios. """ errmsg = "harmonic mean does not support negative values" n = len(data) if n < 1: raise StatisticsError("harmonic_mean requires at least one data point") x = data[0] if n == 1: return x total = 0.0 li = List[float](n) for x in _fail_neg(data, errmsg): if x == 0.0: return 0.0 li.append(1/x) total = _sum(li) return n/total def _ss(data: List[float], c: float): """ Return sum of square deviations of sequence data. If c is None, the mean is calculated in one pass, and the deviations from the mean are calculated in a second pass. Otherwise, deviations are calculated from c as given. """ total = _sum([(x-c)**2 for x in data]) total2 = _sum([(x-c) for x in data]) total -= total2**2/len(data) return total def pvariance(data: List[float], mu: Optional[float]=None): """ Return the population variance of `data`. Should contain atleast one value. The optional argument mu, if given, should be the mean of the data. If it is missing or None, the mean is automatically calculated. TODO/CAVEATS: - Assumes input is a list of floats """ mu1 = ~mu if mu else mean(data) n = len(data) if n < 1: raise StatisticsError("pvariance requires at least one data point") ss = _ss(data, mu1) return ss/n def pstdev(data: List[float], mu: Optional[float]=None): """ Return the square root of the population variance. """ mu1 = ~mu if mu else mean(data) var = pvariance(data, mu1) return _sqrt(var) def variance(data: List[float], xbar: Optional[float]=None): """ Return the sample variance of data. Shoulw contain atleast two values. The optional argument xbar, if given, should be the mean of the data. If it is missing or None, the mean is automatically calculated. """ xbar1 = ~xbar if xbar else mean(data) n = len(data) if n < 2: raise StatisticsError("variance requires at least two data points") ss = _ss(data, xbar1) return ss/(n-1) def stdev(data, xbar: Optional[float]=None): """ Return the square root of the sample variance. """ xbar1 = ~xbar if xbar else mean(data) var = variance(data, xbar1) return _sqrt(var) class NormalDist: """ Normal distribution of a random variable """ PRECISION: float _mu: float _sigma: float def __eq__(self, other: NormalDist): return (self._mu - other._mu) < self.PRECISION and (self._sigma - other._sigma) < self.PRECISION def _init(self, mu: float, sigma: float): self.PRECISION = 1e-6 if sigma < 0.0: raise StatisticsError('sigma must be non-negative') self._mu = mu self._sigma = sigma def __init__(self, mu, sigma): self._init(float(mu), float(sigma)) def __init__(self, mu): self._init(float(mu), 1.0) def __init__(self): self._init(0.0, 1.0) @property def mean(self): """ Arithmetic mean of the normal distribution. """ return self._mu @property def median(self): """ Return the median of the normal distribution """ return self._mu @property def mode(self): """ Return the mode of the normal distribution The mode is the value x where which the probability density function (pdf) takes its maximum value. """ return self._mu @property def stdev(self): """ Standard deviation of the normal distribution. """ return self._sigma @property def variance(self): """ Square of the standard deviation. """ return self._sigma ** 2.0 def pdf(self, x): """ Probability density function. P(x <= X < x+dx) / dx """ variance = self._sigma ** 2.0 if not variance: raise StatisticsError('pdf() not defined when sigma is zero') return _exp((x - self._mu) ** 2.0 / (-2.0 * variance)) / _sqrt(_tau * variance) def cdf(self, x): """ Cumulative distribution function. P(X <= x) """ if not self._sigma: raise StatisticsError('cdf() not defined when sigma is zero') return 0.5 * (1.0 + _erf((x - self._mu) / (self._sigma * _sqrt(2.0)))) def _normal_dist_inv_cdf(self, p: float, mu: float, sigma: float): """ Wichura, M.J. (1988). "Algorithm AS241: The Percentage Points of the Normal Distribution". Applied Statistics. Blackwell Publishing. 37 (3): 477–484. doi:10.2307/2347330. JSTOR 2347330. """ q = p - 0.5 num = 0.0 den = 0.0 if _fabs(q) <= 0.425: r = 0.180625 - q * q # Hash sum: 55.88319_28806_14901_4439 num = (((((((2.5090809287301226727e+3 * r + 3.3430575583588128105e+4) * r + 6.7265770927008700853e+4) * r + 4.5921953931549871457e+4) * r + 1.3731693765509461125e+4) * r + 1.9715909503065514427e+3) * r + 1.3314166789178437745e+2) * r + 3.3871328727963666080e+0) * q den = (((((((5.2264952788528545610e+3 * r + 2.8729085735721942674e+4) * r + 3.9307895800092710610e+4) * r + 2.1213794301586595867e+4) * r + 5.3941960214247511077e+3) * r + 6.8718700749205790830e+2) * r + 4.2313330701600911252e+1) * r + 1.0) x = num / den return mu + (x * sigma) r = p if q <= 0.0 else 1.0 - p r = _sqrt(-_log(r)) if r <= 5.0: r = r - 1.6 # Hash sum: 49.33206_50330_16102_89036 num = (((((((7.74545014278341407640e-4 * r + 2.27238449892691845833e-2) * r + 2.41780725177450611770e-1) * r + 1.27045825245236838258e+0) * r + 3.64784832476320460504e+0) * r + 5.76949722146069140550e+0) * r + 4.63033784615654529590e+0) * r + 1.42343711074968357734e+0) den = (((((((1.05075007164441684324e-9 * r + 5.47593808499534494600e-4) * r + 1.51986665636164571966e-2) * r + 1.48103976427480074590e-1) * r + 6.89767334985100004550e-1) * r + 1.67638483018380384940e+0) * r + 2.05319162663775882187e+0) * r + 1.0) else: r = r - 5.0 # Hash sum: 47.52583_31754_92896_71629 num = (((((((2.01033439929228813265e-7 * r + 2.71155556874348757815e-5) * r + 1.24266094738807843860e-3) * r + 2.65321895265761230930e-2) * r + 2.96560571828504891230e-1) * r + 1.78482653991729133580e+0) * r + 5.46378491116411436990e+0) * r + 6.65790464350110377720e+0) den = (((((((2.04426310338993978564e-15 * r + 1.42151175831644588870e-7) * r + 1.84631831751005468180e-5) * r + 7.86869131145613259100e-4) * r + 1.48753612908506148525e-2) * r + 1.36929880922735805310e-1) * r + 5.99832206555887937690e-1) * r + 1.0) x = num / den if q < 0.0: x = -x return mu + (x * sigma) def inv_cdf(self, p: float): """ Inverse cumulative distribution function. x : P(X <= x) = p Finds the value of the random variable such that the probability of the variable being less than or equal to that value equals the given probability. """ if p <= 0.0 or p >= 1.0: raise StatisticsError('p must be in the range 0.0 < p < 1.0') if self._sigma <= 0.0: raise StatisticsError('cdf() not defined when sigma at or below zero') return self._normal_dist_inv_cdf(p, self._mu, self._sigma) def quantiles(self, n: int=4): """ Divide into *n* continuous intervals with equal probability. Returns a list of (n - 1) cut points separating the intervals. Set *n* to 4 for quartiles (the default). Set *n* to 10 for deciles. Set *n* to 100 for percentiles which gives the 99 cuts points that separate the normal distribution in to 100 equal sized groups. """ return [self.inv_cdf(float(i)/float(n)) for i in range(1, n)] def overlap(self, other: NormalDist) -> float: """ Compute the overlapping coefficient (OVL) between two normal distributions. Measures the agreement between two normal probability distributions. Returns a value between 0.0 and 1.0 giving the overlapping area in the two underlying probability density functions. """ X, Y = self, other if (Y._sigma, Y._mu) < (X._sigma, X._mu): # sort to assure commutativity X, Y = Y, X X_var, Y_var = X.variance, Y.variance if not X_var or not Y_var: raise StatisticsError('overlap() not defined when sigma is zero') dv = Y_var - X_var dm = _fabs(Y._mu - X._mu) if not dv: return 1.0 - _erf(dm / (2.0 * X._sigma * _sqrt(2.0))) a = X._mu * Y_var - Y._mu * X_var b = X._sigma * Y._sigma * _sqrt(dm**2.0 + dv * _log(Y_var / X_var)) x1 = (a + b) / dv x2 = (a - b) / dv return 1.0 - (_fabs(Y.cdf(x1) - X.cdf(x1)) + _fabs(Y.cdf(x2) - X.cdf(x2))) def samples(self, n: int): """ Generate *n* samples for a given mean and standard deviation. """ gauss = random.gauss return [gauss(self._mu, self._sigma) for i in range(n)] def from_samples(data: List[float]): """ Make a normal distribution instance from sample data. TODO/CAVEATS: - Assumes input is a list of floats - Uses mean instead of fmean for now """ xbar = mean(data) return NormalDist(xbar, stdev(data, xbar)) def __add__(x1: NormalDist, x2: NormalDist): """ Add a constant or another NormalDist instance. If *other* is a constant, translate mu by the constant, leaving sigma unchanged. If *other* is a NormalDist, add both the means and the variances. Mathematically, this works only if the two distributions are independent or if they are jointly normally distributed. """ return NormalDist(x1._mu + x2._mu, _hypot(x1._sigma, x2._sigma)) def __add__(x1: NormalDist, x2: float): """ Add a constant or another NormalDist instance. If *other* is a constant, translate mu by the constant, leaving sigma unchanged. If *other* is a NormalDist, add both the means and the variances. Mathematically, this works only if the two distributions are independent or if they are jointly normally distributed. """ return NormalDist(x1._mu + x2, x1._sigma) def __sub__(x1: NormalDist, x2: NormalDist): """ Subtract a constant or another NormalDist instance. If *other* is a constant, translate by the constant mu, leaving sigma unchanged. If *other* is a NormalDist, subtract the means and add the variances. Mathematically, this works only if the two distributions are independent or if they are jointly normally distributed. """ return NormalDist(x1._mu - x2._mu, _hypot(x1._sigma, x2._sigma)) def __sub__(x1: NormalDist, x2: float): """ Subtract a constant or another NormalDist instance. If *other* is a constant, translate by the constant mu, leaving sigma unchanged. If *other* is a NormalDist, subtract the means and add the variances. Mathematically, this works only if the two distributions are independent or if they are jointly normally distributed. """ return NormalDist(x1._mu - x2, x1._sigma) def __mul__(x1: NormalDist, x2: float): """ Multiply both mu and sigma by a constant. Used for rescaling, perhaps to change measurement units. Sigma is scaled with the absolute value of the constant. """ return NormalDist(x1._mu * x2, x1._sigma * _fabs(x2)) def __truediv__(x1: NormalDist, x2: float): """ Divide both mu and sigma by a constant. Used for rescaling, perhaps to change measurement units. Sigma is scaled with the absolute value of the constant. """ return NormalDist(x1._mu / x2, x1._sigma / _fabs(x2)) def __pos__(x1: NormalDist): return NormalDist(x1._mu, x1._sigma) def __neg__(x1: NormalDist): return NormalDist(-x1._mu, x1._sigma) def __radd__(x1: NormalDist, x2: float): return x1 + x2 def __rsub__(x1: NormalDist, x2: NormalDist): return -(x1 - x2) def __rmul__(x1: NormalDist, x2: float): return x1 * x2 def __eq__(x1: NormalDist, x2: NormalDist): return x1._mu == x2._mu and x1._sigma == x2._sigma def __hash__(self): return hash((self._mu, self._sigma)) def __repr__(self): return f'NormalDist(mu={self._mu}, sigma={self._sigma})'