codon/test/stdlib/itertools_test.codon

1320 lines
38 KiB
Python

import itertools
from itertools import *
import math
def lzip(*args):
return list(zip(*args))
def onearg(x):
"Test function of one argument"
return 2 * x
def errfunc(*args):
"Test function that raises an error"
raise ValueError()
def gen3():
"Non-restartable source sequence"
for i in (0, 1, 2):
yield i
def isEven(x):
"Test predicate"
return x % 2 == 0
def isOdd(x):
"Test predicate"
return x % 2 == 1
def tupleize(*args):
return args
def irange(n):
for i in range(n):
yield i
def take(n, seq):
"Convenience function for partially consuming a long of infinite iterable"
return list(islice(seq, n))
def testR(r):
return r[0]
def testR2(r):
return r[2]
def underten(x):
return x < 10
@test
def test_combinations():
f = lambda x: x # hack to get non-static argument
assert list(itertools.combinations("ABCD", f(2))) == [
["A", "B"],
["A", "C"],
["A", "D"],
["B", "C"],
["B", "D"],
["C", "D"],
]
test_intermediate = itertools.combinations("ABCD", f(2))
next(test_intermediate)
assert list(test_intermediate) == [
["A", "C"],
["A", "D"],
["B", "C"],
["B", "D"],
["C", "D"],
]
assert list(itertools.combinations(range(4), f(3))) == [
[0, 1, 2],
[0, 1, 3],
[0, 2, 3],
[1, 2, 3],
]
test_intermediate = itertools.combinations(range(4), f(3))
next(test_intermediate)
assert list(test_intermediate) == [[0, 1, 3], [0, 2, 3], [1, 2, 3]]
assert list(itertools.combinations("ABCD", 2)) == [
("A", "B"),
("A", "C"),
("A", "D"),
("B", "C"),
("B", "D"),
("C", "D"),
]
test_intermediate = itertools.combinations("ABCD", 2)
next(test_intermediate)
assert list(test_intermediate) == [
("A", "C"),
("A", "D"),
("B", "C"),
("B", "D"),
("C", "D"),
]
assert list(itertools.combinations(range(4), 3)) == [
(0, 1, 2),
(0, 1, 3),
(0, 2, 3),
(1, 2, 3),
]
test_intermediate = itertools.combinations(range(4), 3)
next(test_intermediate)
assert list(test_intermediate) == [(0, 1, 3), (0, 2, 3), (1, 2, 3)]
@test
def test_combinations_with_replacement():
f = lambda x: x # hack to get non-static argument
assert list(itertools.combinations_with_replacement(range(3), f(3))) == [
[0, 0, 0],
[0, 0, 1],
[0, 0, 2],
[0, 1, 1],
[0, 1, 2],
[0, 2, 2],
[1, 1, 1],
[1, 1, 2],
[1, 2, 2],
[2, 2, 2],
]
assert list(itertools.combinations_with_replacement("ABC", f(2))) == [
["A", "A"],
["A", "B"],
["A", "C"],
["B", "B"],
["B", "C"],
["C", "C"],
]
test_intermediate = itertools.combinations_with_replacement("ABC", f(2))
next(test_intermediate)
assert list(test_intermediate) == [
["A", "B"],
["A", "C"],
["B", "B"],
["B", "C"],
["C", "C"],
]
assert list(itertools.combinations_with_replacement(range(3), 3)) == [
(0, 0, 0),
(0, 0, 1),
(0, 0, 2),
(0, 1, 1),
(0, 1, 2),
(0, 2, 2),
(1, 1, 1),
(1, 1, 2),
(1, 2, 2),
(2, 2, 2),
]
assert list(itertools.combinations_with_replacement("ABC", 2)) == [
("A", "A"),
("A", "B"),
("A", "C"),
("B", "B"),
("B", "C"),
("C", "C"),
]
test_intermediate = itertools.combinations_with_replacement("ABC", 2)
next(test_intermediate)
assert list(test_intermediate) == [
("A", "B"),
("A", "C"),
("B", "B"),
("B", "C"),
("C", "C"),
]
@test
def test_islice():
ra100 = range(100)
ra = range(10)
assert list(itertools.islice(iter("ABCDEFG"), 0, 2, 1)) == ["A", "B"]
assert list(itertools.islice(iter(ra100), 10, 20, 3)) == [10, 13, 16, 19]
assert list(itertools.islice(iter(ra100), 10, 3, 20)) == []
assert list(itertools.islice(iter(ra100), 10, 20, 1)) == [
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
]
assert list(itertools.islice(iter(ra100), 10, 10, 1)) == []
assert list(itertools.islice(iter(ra100), 10, 3, 1)) == []
# stop=len(iterable)
assert list(itertools.islice(iter(ra), 0, 10, 1)) == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
assert list(itertools.islice(iter(ra), 2, 10, 1)) == [2, 3, 4, 5, 6, 7, 8, 9]
assert list(itertools.islice(iter(ra), 1, 10, 2)) == [1, 3, 5, 7, 9]
try:
list(itertools.islice(iter(ra), -5, 10, 1))
assert False
except ValueError:
pass
@test
def test_count():
# infinite loop here
assert take(3, itertools.count(3.25, 1.0)) == [3.25, 4.25, 5.25]
assert take(3, zip("abc", itertools.count(3.25, 1.0))) == [
("a", 3.25),
("b", 4.25),
("c", 5.25),
]
assert take(2, zip("abc", itertools.count(-1.0, 1.0))) == [("a", -1.0), ("b", 0.0)]
assert take(2, zip("abc", itertools.count(-3.0, 1.0))) == [("a", -3.0), ("b", -2.0)]
@test
def test_repeat():
assert list(itertools.repeat("a", 3)) == ["a", "a", "a"]
assert list(itertools.repeat(1, 10)) == [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
assert list(itertools.repeat("a", -1)) == []
assert len(list(itertools.repeat("a", 0))) == 0
@test
def test_cycle():
assert take(10, zip("zzzzzzzzzzz", itertools.cycle(iter("abc")))) == [
("z", "a"),
("z", "b"),
("z", "c"),
("z", "a"),
("z", "b"),
("z", "c"),
("z", "a"),
("z", "b"),
("z", "c"),
("z", "a"),
]
assert take(10, zip("zzzzzzzzzzz", itertools.cycle(["a", "b"]))) == [
("z", "a"),
("z", "b"),
("z", "a"),
("z", "b"),
("z", "a"),
("z", "b"),
("z", "a"),
("z", "b"),
("z", "a"),
("z", "b"),
]
@test
def test_compress():
assert list(itertools.compress("ABCDEF", [1, 0, 1, 0, 1, 1])) == [
"A",
"C",
"E",
"F",
]
assert list(itertools.compress("ABCDEF", [1, 1, 1, 1, 1, 1])) == [
"A",
"B",
"C",
"D",
"E",
"F",
]
assert list(itertools.compress("ABCDEF", [1, 0, 1])) == ["A", "C"]
assert list(itertools.compress("ABC", [0, 1, 1, 1, 1, 1])) == ["B", "C"]
@test
def test_dropwhile():
data = [1, 3, 5, 20, 2, 4, 6, 8]
assert list(itertools.dropwhile(underten, data)) == [20, 2, 4, 6, 8]
@test
def test_takewhile():
data = [1, 3, 5, 20, 2, 4, 6, 8]
assert list(itertools.takewhile(underten, data)) == [1, 3, 5]
@test
def test_filterfalse():
assert list(itertools.filterfalse(isEven, range(10))) == [1, 3, 5, 7, 9]
assert list(itertools.filterfalse(lambda x: bool(x), [0, 1, 0, 2, 0])) == [0, 0, 0]
@test
def test_permutations():
f = lambda x: x # hack to get non-static argument
assert list(itertools.permutations(range(3), f(2))) == [
[0, 1],
[0, 2],
[1, 0],
[1, 2],
[2, 0],
[2, 1],
]
for n in range(3):
values = [5 * x - 12 for x in range(n)]
for r in range(n + 2):
result = list(itertools.permutations(values, f(r)))
if r > n: # right number of perms
assert len(result) == 0
# factorial is not yet implemented in math
# else: fact(n) / fact(n - r)
assert list(itertools.permutations(range(3), 2)) == [
(0, 1),
(0, 2),
(1, 0),
(1, 2),
(2, 0),
(2, 1),
]
for n in staticrange(3):
values = [5 * x - 12 for x in range(n)]
for r in staticrange(n + 2):
result = list(itertools.permutations(values, r))
if r > n: # right number of perms
assert len(result) == 0
# factorial is not yet implemented in math
# else: fact(n) / fact(n - r)
@test
def test_accumulate():
# addition
assert list(itertools.accumulate(range(10), int.__add__, initial=0)) == [
0,
0,
1,
3,
6,
10,
15,
21,
28,
36,
45,
]
assert list(itertools.accumulate([7], int.__add__, initial=0)) == [
0,
7,
] # iterable of length 1
assert list(itertools.accumulate(range(10), int.__add__)) == [
0,
1,
3,
6,
10,
15,
21,
28,
36,
45,
]
assert list(itertools.accumulate([7], int.__add__)) == [7] # iterable of length 1
assert list(itertools.accumulate("abc", str.__add__, initial="")) == [
"",
"a",
"ab",
"abc",
]
assert list(itertools.accumulate([""], str.__add__, initial=str(0))) == ["0", "0"]
# multiply
assert list(itertools.accumulate(range(10), int.__mul__, initial=0)) == [
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
]
assert list(itertools.accumulate([1, 2, 3, 4, 5], int.__mul__, initial=1)) == [
1,
1,
2,
6,
24,
120,
]
assert list(itertools.accumulate([7], int.__mul__)) == [7]
# pass
@test
def test_chain():
assert list(itertools.chain("abc", "def")) == ["a", "b", "c", "d", "e", "f"]
assert list(itertools.chain("abc")) == ["a", "b", "c"]
assert list(itertools.chain("a", "b", "c")) == ["a", "b", "c"]
assert list(itertools.chain(["abc", "def"])) == ["abc", "def"]
assert list(itertools.chain(["abc"])) == ["abc"]
assert list(itertools.chain(["a", "b", "c"])) == ["a", "b", "c"]
@test
def test_starmap():
assert list(itertools.starmap(math.pow, [(2.0, 5.0), (3.0, 2.0), (10.0, 3.0)])) == [
32.0,
9.0,
1000.0,
]
assert list(itertools.starmap(math.pow, [(0.0, 1.0), (1.0, 2.0), (2.0, 3.0)])) == [
0.0 ** 1.0,
1.0 ** 2.0,
2.0 ** 3.0,
]
@test
def test_groupby():
def key_str(s: str):
return s
assert list(itertools.groupby(iter("AAAABBBCCDAABBC"), key_str)) == [
("A", ["A", "A", "A", "A"]),
("B", ["B", "B", "B"]),
("C", ["C", "C"]),
("D", ["D"]),
("A", ["A", "A"]),
("B", ["B", "B"]),
("C", ["C"]),
]
@test
def test_zip_longest():
assert list(itertools.zip_longest("ABCDE", "12345", fillvalue="-")) == [
("A", "1"),
("B", "2"),
("C", "3"),
("D", "4"),
("E", "5"),
]
assert list(itertools.zip_longest("ABCDE", "123", fillvalue="-")) == [
("A", "1"),
("B", "2"),
("C", "3"),
("D", "-"),
("E", "-"),
]
assert list(itertools.zip_longest("123", "ABCDE", fillvalue="-")) == [
("1", "A"),
("2", "B"),
("3", "C"),
("-", "D"),
("-", "E"),
]
assert list(itertools.zip_longest("", "ABCDE", fillvalue="-")) == [
("-", "A"),
("-", "B"),
("-", "C"),
("-", "D"),
("-", "E"),
]
assert list(itertools.zip_longest("ABCDE", "", fillvalue="-")) == [
("A", "-"),
("B", "-"),
("C", "-"),
("D", "-"),
("E", "-"),
]
assert not list(itertools.zip_longest("", "", fillvalue="-"))
@test
def test_zip_test():
assert list(zip()) == []
assert list(zip((1, 2))) == [(1,), (2,)]
assert list(zip([1, 2], ["a", "b"], (False, True))) == [
(1, "a", False),
(2, "b", True),
]
test_combinations()
test_combinations_with_replacement()
test_islice()
test_count()
test_repeat()
test_cycle()
test_compress()
test_dropwhile()
test_takewhile()
test_filterfalse()
test_permutations()
test_accumulate()
test_chain()
test_starmap()
test_groupby()
test_zip_longest()
test_zip_test()
# Updated tests lifted from CPython test suite
@test
def test_accumulate_from_cpython():
assert list(accumulate(range(10))) == [0, 1, 3, 6, 10, 15, 21, 28, 36, 45]
assert list(accumulate(iterable=range(10))) == [0, 1, 3, 6, 10, 15, 21, 28, 36, 45]
assert list(accumulate("abc")) == ["a", "ab", "abc"]
assert list(accumulate(List[float]())) == []
assert list(accumulate([7])) == [7]
s = [2, 8, 9, 5, 7, 0, 3, 4, 1, 6]
assert list(accumulate(s, min)) == [2, 2, 2, 2, 2, 0, 0, 0, 0, 0]
assert list(accumulate(s, max)) == [2, 8, 9, 9, 9, 9, 9, 9, 9, 9]
mul = lambda a, b: a * b
assert list(accumulate(s, mul)) == [2, 16, 144, 720, 5040, 0, 0, 0, 0, 0]
# assert list(accumulate([10, 5, 1], initial=None)) == [10, 15, 16]
assert list(accumulate([10, 5, 1], initial=100)) == [100, 110, 115, 116]
assert list(accumulate([10, 5, 1], initial=100.5)) == [100.5, 110.5, 115.5, 116.5]
assert list(accumulate(List[int](), initial=100)) == [100]
test_accumulate_from_cpython()
@test
def test_chain_from_cpython():
assert list(chain("abc", "def")) == list("abcdef")
assert list(chain("abc")) == list("abc")
assert list(chain("")) == []
assert list(take(4, chain("abc", "def"))) == list("abcd")
test_chain_from_cpython()
@test
def test_chain_from_iterable_from_cpython():
assert list(chain.from_iterable(["abc", "def"])) == list("abcdef")
assert list(chain.from_iterable(["abc"])) == list("abc")
assert list(chain.from_iterable([""])) == []
assert take(4, chain.from_iterable(["abc", "def"])) == list("abcd")
test_chain_from_iterable_from_cpython()
@test
def test_combinations_from_cpython():
f = lambda x: x # hack to get non-static argument
from math import factorial as fact
err = False
try:
list(combinations("abc", f(-2)))
assert False
except ValueError:
err = True
assert err
assert list(combinations("abc", f(32))) == [] # r > n
assert list(combinations("ABCD", f(2))) == [
["A", "B"],
["A", "C"],
["A", "D"],
["B", "C"],
["B", "D"],
["C", "D"],
]
assert list(combinations(range(4), f(3))) == [
[0, 1, 2],
[0, 1, 3],
[0, 2, 3],
[1, 2, 3],
]
for n in range(7):
values = [5 * x - 12 for x in range(n)]
for r in range(n + 2):
result = list(combinations(values, f(r)))
assert len(result) == (0 if r > n else fact(n) // fact(r) // fact(n - r))
assert len(result) == len(set(result)) # no repeats
# assert result == sorted(result) # lexicographic order
for c in result:
assert len(c) == r # r-length combinations
assert len(set(c)) == r # no duplicate elements
assert list(c) == sorted(c) # keep original ordering
assert all(e in values for e in c) # elements taken from input iterable
assert list(c) == [
e for e in values if e in c
] # comb is a subsequence of the input iterable
assert list(combinations("abc", 32)) == [] # r > n
assert list(combinations("ABCD", 2)) == [
("A", "B"),
("A", "C"),
("A", "D"),
("B", "C"),
("B", "D"),
("C", "D"),
]
assert list(combinations(range(4), 3)) == [
(0, 1, 2),
(0, 1, 3),
(0, 2, 3),
(1, 2, 3),
]
for n in staticrange(7):
values = [5 * x - 12 for x in range(n)]
for r in staticrange(n + 2):
result = list(combinations(values, r))
assert len(result) == (0 if r > n else fact(n) // fact(r) // fact(n - r))
assert len(result) == len(set(result)) # no repeats
# assert result == sorted(result) # lexicographic order
for c in result:
assert len(c) == r # r-length combinations
assert len(set(c)) == r # no duplicate elements
assert list(c) == sorted(c) # keep original ordering
assert all(e in values for e in c) # elements taken from input iterable
assert list(c) == [
e for e in values if e in c
] # comb is a subsequence of the input iterable
test_combinations_from_cpython()
@test
def test_combinations_with_replacement_from_cpython():
f = lambda x: x # hack to get non-static argument
cwr = combinations_with_replacement
err = False
try:
list(combinations_with_replacement("abc", f(-2)))
assert False
except ValueError:
err = True
assert err
assert list(combinations_with_replacement("ABC", f(2))) == [
["A", "A"],
["A", "B"],
["A", "C"],
["B", "B"],
["B", "C"],
["C", "C"],
]
def numcombs(n, r):
from math import factorial as fact
if not n:
return 0 if r else 1
return fact(n + r - 1) // fact(r) // fact(n - 1)
for n in range(7):
values = [5 * x - 12 for x in range(n)]
for r in range(n + 2):
result = list(combinations_with_replacement(values, r))
regular_combs = list(combinations(values, r))
assert len(result) == numcombs(n, r)
assert len(result) == len(set(result)) # no repeats
# assert result == sorted(result) # lexicographic order
if n == 0 or r <= 1:
assert result == regular_combs # cases that should be identical
else:
assert set(result) >= set(regular_combs)
for c in result:
assert len(c) == r # r-length combinations
noruns = [k for k, v in groupby(c)] # combo without consecutive repeats
assert len(noruns) == len(
set(noruns)
) # no repeats other than consecutive
assert list(c) == sorted(c) # keep original ordering
assert all(e in values for e in c) # elements taken from input iterable
assert noruns == [
e for e in values if e in c
] # comb is a subsequence of the input iterable
assert list(combinations_with_replacement("ABC", 2)) == [
("A", "A"),
("A", "B"),
("A", "C"),
("B", "B"),
("B", "C"),
("C", "C"),
]
for n in staticrange(7):
values = [5 * x - 12 for x in range(n)]
for r in staticrange(n + 2):
result = list(combinations_with_replacement(values, r))
regular_combs = list(combinations(values, r))
assert len(result) == numcombs(n, r)
assert len(result) == len(set(result)) # no repeats
# assert result == sorted(result) # lexicographic order
if n == 0 or r <= 1:
assert result == regular_combs # cases that should be identical
else:
assert set(result) >= set(regular_combs)
for c in result:
assert len(c) == r # r-length combinations
noruns = [k for k, v in groupby(c)] # combo without consecutive repeats
assert len(noruns) == len(
set(noruns)
) # no repeats other than consecutive
assert list(c) == sorted(c) # keep original ordering
assert all(e in values for e in c) # elements taken from input iterable
assert noruns == [
e for e in values if e in c
] # comb is a subsequence of the input iterable
test_combinations_with_replacement_from_cpython()
@test
def test_permutations_from_cpython():
f = lambda x: x # hack to get non-static argument
from math import factorial as fact
err = False
try:
list(permutations("abc", f(-2)))
assert False
except ValueError:
err = True
assert err
assert list(permutations("abc", f(32))) == []
assert list(permutations(range(3), f(2))) == [
[0, 1],
[0, 2],
[1, 0],
[1, 2],
[2, 0],
[2, 1],
]
for n in range(7):
values = [5 * x - 12 for x in range(n)]
for r in range(n + 2):
result = list(permutations(values, r))
assert len(result) == (
0 if r > n else fact(n) // fact(n - r)
) # right number of perms
assert len(result) == len(set(result)) # no repeats
# assert result == sorted(result) # lexicographic order
for p in result:
assert len(p) == r # r-length permutations
assert len(set(p)) == r # no duplicate elements
assert all(e in values for e in p) # elements taken from input iterable
if r == n:
assert result == list(permutations(values, None)) # test r as None
assert result == list(permutations(values)) # test default r
assert list(permutations("abc", 32)) == []
assert list(permutations(range(3), 2)) == [
(0, 1),
(0, 2),
(1, 0),
(1, 2),
(2, 0),
(2, 1),
]
for n in staticrange(7):
values = [5 * x - 12 for x in range(n)]
for r in staticrange(n + 2):
result = list(permutations(values, r))
assert len(result) == (
0 if r > n else fact(n) // fact(n - r)
) # right number of perms
assert len(result) == len(set(result)) # no repeats
# assert result == sorted(result) # lexicographic order
for p in result:
assert len(p) == r # r-length permutations
assert len(set(p)) == r # no duplicate elements
assert all(e in values for e in p) # elements taken from input iterable
if r == n:
assert result == list(permutations(values, r))
test_permutations_from_cpython()
@extend
class List:
def __lt__(self, other: List[T]):
if len(self) != len(other):
return len(self) < len(other)
for a, b in zip(self, other):
if a < b:
return True
if a > b:
return False
return False
def __le__(self, other: List[T]):
if len(self) != len(other):
return len(self) < len(other)
for a, b in zip(self, other):
if a < b:
return True
if a > b:
return False
return True
def __gt__(self, other: List[T]):
if len(self) != len(other):
return len(self) < len(other)
for a, b in zip(self, other):
if a > b:
return True
if a < b:
return False
return False
def __ge__(self, other: List[T]):
if len(self) != len(other):
return len(self) < len(other)
for a, b in zip(self, other):
if a > b:
return True
if a < b:
return False
return True
@test
def test_combinatorics_from_cpython():
# Test relationships between product(), permutations(),
# combinations() and combinations_with_replacement().
from math import factorial as fact
for n in range(6):
s = "ABCDEFG"[:n]
for r in range(8):
prod = list(product(s, repeat=r))
cwr = list(combinations_with_replacement(s, r))
perm = list(permutations(s, r))
comb = list(combinations(s, r))
# Check size
assert len(prod) == n ** r
assert len(cwr) == (
(fact(n + r - 1) // fact(r) // fact(n - 1)) if n else (0 if r else 1)
)
assert len(perm) == (0 if r > n else fact(n) // fact(n - r))
assert len(comb) == (0 if r > n else fact(n) // fact(r) // fact(n - r))
# Check lexicographic order without repeated tuples
assert prod == sorted(set(prod))
assert cwr == sorted(set(cwr))
assert perm == sorted(set(perm))
assert comb == sorted(set(comb))
# Check interrelationships
assert cwr == [
t for t in prod if sorted(t) == list(t)
] # cwr: prods which are sorted
assert perm == [
t for t in prod if len(set(t)) == r
] # perm: prods with no dups
assert comb == [
t for t in perm if sorted(t) == list(t)
] # comb: perms that are sorted
assert comb == [
t for t in cwr if len(set(t)) == r
] # comb: cwrs without dups
assert comb == list(
filter(set(cwr).__contains__, perm)
) # comb: perm that is a cwr
assert comb == list(
filter(set(perm).__contains__, cwr)
) # comb: cwr that is a perm
assert comb == sorted(set(cwr) & set(perm)) # comb: both a cwr and a perm
for n in staticrange(6):
s = "ABCDEFG"[:n]
for r in staticrange(8):
prod = list(product(s, repeat=r))
cwr = list(combinations_with_replacement(s, r))
perm = list(permutations(s, r))
comb = list(combinations(s, r))
# Check size
assert len(prod) == n ** r
assert len(cwr) == (
(fact(n + r - 1) // fact(r) // fact(n - 1)) if n else (0 if r else 1)
)
assert len(perm) == (0 if r > n else fact(n) // fact(n - r))
assert len(comb) == (0 if r > n else fact(n) // fact(r) // fact(n - r))
# Check lexicographic order without repeated tuples
assert prod == sorted(set(prod))
assert cwr == sorted(set(cwr))
assert perm == sorted(set(perm))
assert comb == sorted(set(comb))
# Check interrelationships
assert cwr == [
t for t in prod if sorted(t) == list(t)
] # cwr: prods which are sorted
assert perm == [
t for t in prod if len(set(t)) == r
] # perm: prods with no dups
assert comb == [
t for t in perm if sorted(t) == list(t)
] # comb: perms that are sorted
assert comb == [
t for t in cwr if len(set(t)) == r
] # comb: cwrs without dups
assert comb == list(
filter(set(cwr).__contains__, perm)
) # comb: perm that is a cwr
assert comb == list(
filter(set(perm).__contains__, cwr)
) # comb: cwr that is a perm
assert comb == sorted(set(cwr) & set(perm)) # comb: both a cwr and a perm
test_combinatorics_from_cpython()
@test
def test_compress_from_cpython():
assert list(compress(data="ABCDEF", selectors=[1, 0, 1, 0, 1, 1])) == list("ACEF")
assert list(compress("ABCDEF", [1, 0, 1, 0, 1, 1])) == list("ACEF")
assert list(compress("ABCDEF", [0, 0, 0, 0, 0, 0])) == list("")
assert list(compress("ABCDEF", [1, 1, 1, 1, 1, 1])) == list("ABCDEF")
assert list(compress("ABCDEF", [1, 0, 1])) == list("AC")
assert list(compress("ABC", [0, 1, 1, 1, 1, 1])) == list("BC")
n = 10000
data = chain.from_iterable(repeat(range(6), n))
selectors = chain.from_iterable(repeat((0, 1)))
assert list(compress(data, selectors)) == [1, 3, 5] * n
test_compress_from_cpython()
@test
def test_count_from_cpython():
assert lzip("abc", count()) == [("a", 0), ("b", 1), ("c", 2)]
assert lzip("abc", count(3)) == [("a", 3), ("b", 4), ("c", 5)]
assert take(2, lzip("abc", count(3))) == [("a", 3), ("b", 4)]
assert take(2, zip("abc", count(-1))) == [("a", -1), ("b", 0)]
assert take(2, zip("abc", count(-3))) == [("a", -3), ("b", -2)]
assert take(3, count(3.25)) == [3.25, 4.25, 5.25]
test_count_from_cpython()
@test
def test_count_with_stride_from_cpython():
assert lzip("abc", count(2, 3)) == [("a", 2), ("b", 5), ("c", 8)]
assert lzip("abc", count(start=2, step=3)) == [("a", 2), ("b", 5), ("c", 8)]
assert lzip("abc", count(step=-1)) == [("a", 0), ("b", -1), ("c", -2)]
assert lzip("abc", count(2, 0)) == [("a", 2), ("b", 2), ("c", 2)]
assert lzip("abc", count(2, 1)) == [("a", 2), ("b", 3), ("c", 4)]
assert lzip("abc", count(2, 3)) == [("a", 2), ("b", 5), ("c", 8)]
assert take(3, count(2.0, 1.25)) == [2.0, 3.25, 4.5]
test_count_with_stride_from_cpython()
@test
def test_cycle_from_cpython():
assert take(10, cycle("abc")) == list("abcabcabca")
assert list(cycle("")) == []
assert list(islice(cycle(gen3()), 10)) == [0, 1, 2, 0, 1, 2, 0, 1, 2, 0]
test_cycle_from_cpython()
@test
def test_groupby_from_cpython():
# Check whether it accepts arguments correctly
assert [] == list(groupby(List[int]()))
assert [] == list(groupby(List[int](), key=lambda a: a))
# Check normal input
if 1:
s = [
(0, 10, 20),
(0, 11, 21),
(0, 12, 21),
(1, 13, 21),
(1, 14, 22),
(2, 15, 22),
(3, 16, 23),
(3, 17, 23),
]
if 1:
dup = []
for k, g in groupby(s, lambda r: r[0]):
for elem in g:
assert k == elem[0]
dup.append(elem)
assert s == dup
# Check nested case
if 1:
dup = []
for k, g in groupby(s, testR):
for ik, ig in groupby(g, testR2):
for elem in ig:
assert k == elem[0]
assert ik == elem[2]
dup.append(elem)
assert s == dup
# Check case where inner iterator is not used
keys = [k for k, g in groupby(s, testR)]
expectedkeys = set([r[0] for r in s])
assert set(keys) == expectedkeys
assert len(keys) == len(expectedkeys)
if 1:
# Exercise pipes and filters style
s = "abracadabra"
if 1:
# sort s | uniq
r = [k for k, g in groupby(sorted(s))]
assert r == ["a", "b", "c", "d", "r"]
if 1:
# sort s | uniq -d
r = [k for k, g in groupby(sorted(s)) if list(islice(g, 1, 2))]
assert r == ["a", "b", "r"]
if 1:
# sort s | uniq -c
r = [(len(list(g)), k) for k, g in groupby(sorted(s))]
assert r == [(5, "a"), (2, "b"), (1, "c"), (1, "d"), (2, "r")]
if 1:
# sort s | uniq -c | sort -rn | head -3
r = sorted(
[(len(list(g)), k) for k, g in groupby(sorted(s))], reverse=True
)[:3]
assert r == [(5, "a"), (2, "r"), (2, "b")]
test_groupby_from_cpython()
@test
def test_filter_from_cpython():
assert list(filter(isEven, range(6))) == [0, 2, 4]
# assert list(filter(None, [0,1,0,2,0])) == [1,2] # TODO
assert list(filter(lambda x: bool(x), [0, 1, 0, 2, 0])) == [1, 2]
assert take(4, filter(isEven, count())) == [0, 2, 4, 6]
test_filter_from_cpython()
@test
def test_filterfalse_from_cpython():
assert list(filterfalse(isEven, range(6))) == [1, 3, 5]
# assert list(filter(None, [0,1,0,2,0])) == [0,0,0] # TODO
assert list(filterfalse(lambda x: bool(x), [0, 1, 0, 2, 0])) == [0, 0, 0]
assert take(4, filterfalse(isEven, count())) == [1, 3, 5, 7]
test_filterfalse_from_cpython()
@test
def test_zip_from_cpython():
ans = [(x, y) for x, y in zip("abc", count())]
assert ans == [("a", 0), ("b", 1), ("c", 2)]
assert list(zip("abc", range(6))) == lzip("abc", range(6))
assert list(zip("abcdef", range(3))) == lzip("abcdef", range(3))
assert take(3, zip("abcdef", count())) == lzip("abcdef", range(3))
assert list(zip("abcdef")) == lzip("abcdef")
assert list(zip()) == lzip()
assert [pair for pair in zip("abc", "def")] == lzip("abc", "def")
test_zip_from_cpython()
@test
def test_ziplongest_from_cpython():
for args in (
(range(1000), range(2000, 2100), range(3000, 3050)),
(range(1000), range(0), range(3000, 3050), range(1200), range(1500)),
(range(1000), range(0), range(3000, 3050), range(1200), range(1500), range(0)),
):
target = [
tuple(arg[i] if i < len(arg) else None for arg in args)
for i in range(max(map(len, args)))
]
assert str(list(zip_longest(*args))) == str(target)
target2 = [
[(-999 if e is None else e.__val__()) for e in t] for t in target
] # Replace None fills with 'X'
assert list(zip_longest(*args, fillvalue=-999)) == target2
assert (
str(list(zip_longest("abc", range(6))))
== "[('a', 0), ('b', 1), ('c', 2), (None, 3), (None, 4), (None, 5)]"
)
assert (
str(list(zip_longest(range(6), "abc")))
== "[(0, 'a'), (1, 'b'), (2, 'c'), (3, None), (4, None), (5, None)]"
)
test_ziplongest_from_cpython()
@test
def test_product_from_cpython():
for args, result in (
# ((), [()]), # zero iterables # TODO
(("ab",), [("a",), ("b",)]), # one iterable
(
(range(2), range(3)),
[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)],
), # two iterables
(
(range(0), range(2), range(3)),
List[Tuple[int, int, int]](),
), # first iterable with zero length
(
(range(2), range(0), range(3)),
List[Tuple[int, int, int]](),
), # middle iterable with zero length
(
(range(2), range(3), range(0)),
List[Tuple[int, int, int]](),
), # last iterable with zero length
):
assert list(product(*args)) == result
assert (
len(list(product(range(7), range(7), range(7), range(7), range(7), range(7))))
== 7 ** 6
)
test_product_from_cpython()
@test
def test_repeat_from_cpython():
assert list(repeat(object="a", times=3)) == ["a", "a", "a"]
assert lzip(range(3), repeat("a")) == [(0, "a"), (1, "a"), (2, "a")]
assert list(repeat("a", 3)) == ["a", "a", "a"]
assert take(3, repeat("a")) == ["a", "a", "a"]
assert list(repeat("a", 0)) == []
assert list(repeat("a", -3)) == []
test_repeat_from_cpython()
@test
def test_map_from_cpython():
power = lambda a, b: a ** b
assert list(map(power, range(3), range(1, 7))) == [0 ** 1, 1 ** 2, 2 ** 3]
assert list(map(tupleize, "abc", range(5))) == [("a", 0), ("b", 1), ("c", 2)]
assert list(map(tupleize, "abc", count())) == [("a", 0), ("b", 1), ("c", 2)]
assert take(2, map(tupleize, "abc", count())) == [("a", 0), ("b", 1)]
assert list(map(tupleize, List[int]())) == []
test_map_from_cpython()
@test
def test_starmap_from_cpython():
power = lambda a, b: a ** b
assert list(starmap(power, zip(range(3), range(1, 7)))) == [0 ** 1, 1 ** 2, 2 ** 3]
assert take(3, starmap(power, zip(count(), count(1)))) == [0 ** 1, 1 ** 2, 2 ** 3]
# assert list(starmap(tupleize, List[int]())) == [] # TODO
assert list(starmap(power, [(4, 5)])) == [4 ** 5]
test_starmap_from_cpython()
@test
def test_islice_from_cpython():
for args in ( # islice(args) should agree with range(args)
(10, 20, 3),
(10, 3, 20),
(10, 20),
(10, 10),
(10, 3),
(20,),
):
assert list(islice(range(100), *args)) == list(range(*args))
for args, tgtargs in ( # Stop when seqn is exhausted
((10, 110, 3), ((10, 100, 3))),
((10, 110), ((10, 100))),
((110,), (100,)),
):
assert list(islice(range(100), *args)) == list(range(*tgtargs))
# Test stop=None
assert list(islice(range(10), None)) == list(range(10))
assert list(islice(range(10), None, None)) == list(range(10))
assert list(islice(range(10), None, None, None)) == list(range(10))
assert list(islice(range(10), 2, None)) == list(range(2, 10))
assert list(islice(range(10), 1, None, 2)) == list(range(1, 10, 2))
test_islice_from_cpython()
@test
def test_takewhile_from_cpython():
data = [1, 3, 5, 20, 2, 4, 6, 8]
assert list(takewhile(underten, data)) == [1, 3, 5]
assert list(takewhile(underten, List[int]())) == []
t = takewhile(lambda x: bool(x), [1, 1, 1, 0, 0, 0])
assert list(t) == [1, 1, 1]
test_takewhile_from_cpython()
@test
def test_dropwhile_from_cpython():
data = [1, 3, 5, 20, 2, 4, 6, 8]
assert list(dropwhile(underten, data)) == [20, 2, 4, 6, 8]
assert list(dropwhile(underten, List[int]())) == []
test_dropwhile_from_cpython()
@test
def test_tee_from_cpython():
import random
n = 200
a, b = tee(List[int]()) # test empty iterator
assert list(a) == []
assert list(b) == []
a, b = tee(irange(n)) # test 100% interleaved
assert lzip(a, b) == lzip(range(n), range(n))
a, b = tee(irange(n)) # test 0% interleaved
assert list(a) == list(range(n))
assert list(b) == list(range(n))
a, b = tee(irange(n)) # test dealloc of leading iterator
for i in range(100):
assert next(a) == i
assert list(b) == list(range(n))
a, b = tee(irange(n)) # test dealloc of trailing iterator
for i in range(100):
assert next(a) == i
assert list(a) == list(range(100, n))
for j in range(5): # test randomly interleaved
order = [0] * n + [1] * n
random.shuffle(order)
lists = ([], [])
its = tee(irange(n))
for i in order:
value = next(its[i])
lists[i].append(value)
assert lists[0] == list(range(n))
assert lists[1] == list(range(n))
# test long-lagged and multi-way split
a, b, c = tee(range(2000), 3)
for i in range(100):
assert next(a) == i
assert list(b) == list(range(2000))
assert [next(c), next(c)] == list(range(2))
assert list(a) == list(range(100, 2000))
assert list(c) == list(range(2, 2000))
test_tee_from_cpython()