freeCodeCamp/curriculum/challenges/japanese/10-coding-interview-prep/rosetta-code/cramers-rule.md

168 lines
5.5 KiB
Markdown
Raw Normal View History

---
id: 59713da0a428c1a62d7db430
title: クラメルの公式
challengeType: 5
forumTopicId: 302239
dashedName: cramers-rule
---
# --description--
[線形代数で](https://en.wikipedia.org/wiki/linear algebra "wp: linear algebra")、[クラメルの公式](https://en.wikipedia.org/wiki/Cramer's rule "wp: Cramer's rule") は未知数と同じくらい多くの方程式を含む [線形方程式のシステム](https://en.wikipedia.org/wiki/system of linear equations "wp: system of linear equations") を解くための明示的な公式であり、システムに一意の解があれば常に有効です。 解を、(正方) 係数行列と、列を方程式右辺のベクトルで置き換えて得られる行列の行列式で表します。
次のように仮定します。
$\\left\\{\\begin{matrix}a_1x + b_1y + c_1z&= {\\color{red}d_1}\\\\a_2x + b_2y + c_2z&= {\\color{red}d_2}\\\\a_3x + b_3y + c_3z&= {\\color{red}d_3}\\end{matrix}\\right.$
行列形式で、上記は以下のように表されます。
$\\begin{bmatrix} a_1 & b_1 & c_1 \\\\ a_2 & b_2 & c_2 \\\\ a_3 & b_3 & c_3 \\end{bmatrix}\\begin{bmatrix} x \\\\ y \\\\ z \\end{bmatrix}=\\begin{bmatrix} {\\color{red}d_1} \\\\ {\\color{red}d_2} \\\\ {\\color{red}d_3} \\end{bmatrix}.$
したがって、$x、y$、および $z$ の値は以下のようになります。
$x = \\frac{\\begin{vmatrix} {\\color{red}d_1} & b_1 & c_1 \\\\ {\\color{red}d_2} & b_2 & c_2 \\\\ {\\color{red}d_3} & b_3 & c_3 \\end{vmatrix} } { \\begin{vmatrix} a_1 & b_1 & c_1 \\\\ a_2 & b_2 & c_2 \\\\ a_3 & b_3 & c_3 \\end{vmatrix}}, \\quad y = \\frac {\\begin{vmatrix} a_1 & {\\color{red}d_1} & c_1 \\\\ a_2 & {\\color{red}d_2} & c_2 \\\\ a_3 & {\\color{red}d_3} & c_3 \\end{vmatrix}} {\\begin{vmatrix} a_1 & b_1 & c_1 \\\\ a_2 & b_2 & c_2 \\\\ a_3 & b_3 & c_3 \\end{vmatrix}}, \\text{ and }z = \\frac { \\begin{vmatrix} a_1 & b_1 & {\\color{red}d_1} \\\\ a_2 & b_2 & {\\color{red}d_2} \\\\ a_3 & b_3 & {\\color{red}d_3} \\end{vmatrix}} {\\begin{vmatrix} a_1 & b_1 & c_1 \\\\ a_2 & b_2 & c_2 \\\\ a_3 & b_3 & c_3 \\end{vmatrix} }.$
# --instructions--
以下の連立方程式が与えられます。
$\\begin{cases} 2w-x+5y+z=-3 \\\\ 3w+2x+2y-6z=-32 \\\\ w+3x+3y-z=-47 \\\\ 5w-2x-3y+3z=49 \\\\ \\end{cases}$
クラメルの公式を使用すると、解は $w$、$x$、$y$ および $z$となります。
# --hints--
`cramersRule` という関数です。
```js
assert(typeof cramersRule === 'function');
```
`cramersRule([[2, -1, 5, 1], [3, 2, 2, -6], [1, 3, 3, -1], [5, -2, -3, 3]], [-3, -32, -47, 49])``[2, -12, -4, 1]` を返します。
```js
assert.deepEqual(cramersRule(matrices[0], freeTerms[0]), answers[0]);
```
`cramersRule([[3, 1, 1], [2, 2, 5], [1, -3, -4]], [3, -1, 2])``[1, 1, -1]` を返します。
```js
assert.deepEqual(cramersRule(matrices[1], freeTerms[1]), answers[1]);
```
# --seed--
## --after-user-code--
```js
const matrices = [
[
[2, -1, 5, 1],
[3, 2, 2, -6],
[1, 3, 3, -1],
[5, -2, -3, 3]
],
[
[3, 1, 1],
[2, 2, 5],
[1, -3, -4]
]
];
const freeTerms = [[-3, -32, -47, 49], [3, -1, 2]];
const answers = [[2, -12, -4, 1], [1, 1, -1]];
```
## --seed-contents--
```js
function cramersRule(matrix, freeTerms) {
return true;
}
```
# --solutions--
```js
/**
* Compute Cramer's Rule
* @param {array} matrix x,y,z, etc. terms
* @param {array} freeTerms
* @return {array} solution for x,y,z, etc.
*/
function cramersRule(matrix, freeTerms) {
const det = detr(matrix);
const returnArray = [];
let i;
for (i = 0; i < matrix[0].length; i++) {
const tmpMatrix = insertInTerms(matrix, freeTerms, i);
returnArray.push(detr(tmpMatrix) / det);
}
return returnArray;
}
/**
* Inserts single dimensional array into
* @param {array} matrix multidimensional array to have ins inserted into
* @param {array} ins single dimensional array to be inserted vertically into matrix
* @param {array} at zero based offset for ins to be inserted into matrix
* @return {array} New multidimensional array with ins replacing the at column in matrix
*/
function insertInTerms(matrix, ins, at) {
const tmpMatrix = clone(matrix);
let i;
for (i = 0; i < matrix.length; i++) {
tmpMatrix[i][at] = ins[i];
}
return tmpMatrix;
}
/**
* Compute the determinate of a matrix. No protection, assumes square matrix
* function borrowed, and adapted from MIT Licensed numericjs library (www.numericjs.com)
* @param {array} m Input Matrix (multidimensional array)
* @return {number} result rounded to 2 decimal
*/
function detr(m) {
let ret = 1;
let j;
let k;
const A = clone(m);
const n = m[0].length;
let alpha;
for (j = 0; j < n - 1; j++) {
k = j;
for (let i = j + 1; i < n; i++) { if (Math.abs(A[i][j]) > Math.abs(A[k][j])) { k = i; } }
if (k !== j) {
const temp = A[k]; A[k] = A[j]; A[j] = temp;
ret *= -1;
}
const Aj = A[j];
for (let i = j + 1; i < n; i++) {
const Ai = A[i];
alpha = Ai[j] / Aj[j];
for (k = j + 1; k < n - 1; k += 2) {
const k1 = k + 1;
Ai[k] -= Aj[k] * alpha;
Ai[k1] -= Aj[k1] * alpha;
}
if (k !== n) { Ai[k] -= Aj[k] * alpha; }
}
if (Aj[j] === 0) { return 0; }
ret *= Aj[j];
}
return Math.round(ret * A[j][j] * 100) / 100;
}
/**
* Clone two dimensional Array using ECMAScript 5 map function and EcmaScript 3 slice
* @param {array} m Input matrix (multidimensional array) to clone
* @return {array} New matrix copy
*/
function clone(m) {
return m.map(a => a.slice());
}
```