--- id: 5e6decd8ec8d7db960950d1c title: LU decomposition challengeType: 5 forumTopicId: 385280 --- # --description-- Every square matrix $A$ can be decomposed into a product of a lower triangular matrix $L$ and a upper triangular matrix $U$, as described in [LU decomposition](). $A = LU$ It is a modified form of Gaussian elimination. While the [Cholesky decomposition]() only works for symmetric, positive definite matrices, the more general LU decomposition works for any square matrix. There are several algorithms for calculating $L$ and $U$. To derive *Crout's algorithm* for a 3x3 example, we have to solve the following system: \\begin{align}A = \\begin{pmatrix} a\_{11} & a\_{12} & a\_{13}\\\\ a\_{21} & a\_{22} & a\_{23}\\\\ a\_{31} & a\_{32} & a\_{33}\\\\ \\end{pmatrix}= \\begin{pmatrix} l\_{11} & 0 & 0 \\\\ l\_{21} & l\_{22} & 0 \\\\ l\_{31} & l\_{32} & l\_{33}\\\\ \\end{pmatrix} \\begin{pmatrix} u\_{11} & u\_{12} & u\_{13} \\\\ 0 & u\_{22} & u\_{23} \\\\ 0 & 0 & u\_{33} \\end{pmatrix} = LU\\end{align} We now would have to solve 9 equations with 12 unknowns. To make the system uniquely solvable, usually the diagonal elements of $L$ are set to 1 $l\_{11}=1$ $l\_{22}=1$ $l\_{33}=1$ so we get a solvable system of 9 unknowns and 9 equations. \\begin{align}A = \\begin{pmatrix} a\_{11} & a\_{12} & a\_{13}\\\\ a\_{21} & a\_{22} & a\_{23}\\\\ a\_{31} & a\_{32} & a\_{33}\\\\ \\end{pmatrix} = \\begin{pmatrix} 1 & 0 & 0 \\\\ l\_{21} & 1 & 0 \\\\ l\_{31} & l\_{32} & 1\\\\ \\end{pmatrix} \\begin{pmatrix} u\_{11} & u\_{12} & u\_{13} \\\\ 0 & u\_{22} & u\_{23} \\\\ 0 & 0 & u\_{33} \\end{pmatrix} = \\begin{pmatrix} u\_{11} & u\_{12} & u\_{13} \\\\ u\_{11}l\_{21} & u\_{12}l\_{21}+u\_{22} & u\_{13}l\_{21}+u\_{23} \\\\ u\_{11}l\_{31} & u\_{12}l\_{31}+u\_{22}l\_{32} & u\_{13}l\_{31} + u\_{23}l\_{32}+u\_{33} \\end{pmatrix} = LU\\end{align} Solving for the other $l$ and $u$, we get the following equations: $u\_{11}=a\_{11}$ $u\_{12}=a\_{12}$ $u\_{13}=a\_{13}$ $u\_{22}=a\_{22} - u\_{12}l\_{21}$ $u\_{23}=a\_{23} - u\_{13}l\_{21}$ $u\_{33}=a\_{33} - (u\_{13}l\_{31} + u\_{23}l\_{32})$ and for $l$: $l\_{21}=\\frac{1}{u\_{11}} a\_{21}$ $l\_{31}=\\frac{1}{u\_{11}} a\_{31}$ $l\_{32}=\\frac{1}{u\_{22}} (a\_{32} - u\_{12}l\_{31})$ We see that there is a calculation pattern, which can be expressed as the following formulas, first for $U$ $u\_{ij} = a\_{ij} - \\sum\_{k=1}^{i-1} u\_{kj}l\_{ik}$ and then for $L$ $l\_{ij} = \\frac{1}{u\_{jj}} (a\_{ij} - \\sum\_{k=1}^{j-1} u\_{kj}l\_{ik})$ We see in the second formula that to get the $l\_{ij}$ below the diagonal, we have to divide by the diagonal element (pivot) $u\_{jj}$, so we get problems when $u\_{jj}$ is either 0 or very small, which leads to numerical instability. The solution to this problem is *pivoting* $A$, which means rearranging the rows of $A$, prior to the $LU$ decomposition, in a way that the largest element of each column gets onto the diagonal of $A$. Rearranging the rows means to multiply $A$ by a permutation matrix $P$: $PA \\Rightarrow A'$ Example: \\begin{align} \\begin{pmatrix} 0 & 1 \\\\ 1 & 0 \\end{pmatrix} \\begin{pmatrix} 1 & 4 \\\\ 2 & 3 \\end{pmatrix} \\Rightarrow \\begin{pmatrix} 2 & 3 \\\\ 1 & 4 \\end{pmatrix} \\end{align} The decomposition algorithm is then applied on the rearranged matrix so that $PA = LU$ # --instructions-- The task is to implement a routine which will take a square nxn matrix $A$ and return a lower triangular matrix $L$, a upper triangular matrix $U$ and a permutation matrix $P$, so that the above equation is fullfilled. The returned value should be in the form `[L, U, P]`. # --hints-- `luDecomposition` should be a function. ```js assert(typeof luDecomposition == 'function'); ``` `luDecomposition([[1, 3, 5], [2, 4, 7], [1, 1, 0]])` should return a array. ```js assert( Array.isArray( luDecomposition([ [1, 3, 5], [2, 4, 7], [1, 1, 0] ]) ) ); ``` `luDecomposition([[1, 3, 5], [2, 4, 7], [1, 1, 0]])` should return `[[[1, 0, 0], [0.5, 1, 0], [0.5, -1, 1]], [[2, 4, 7], [0, 1, 1.5], [0, 0, -2]], [[0, 1, 0], [1, 0, 0], [0, 0, 1]]]`. ```js assert.deepEqual( luDecomposition([ [1, 3, 5], [2, 4, 7], [1, 1, 0] ]), [ [ [1, 0, 0], [0.5, 1, 0], [0.5, -1, 1] ], [ [2, 4, 7], [0, 1, 1.5], [0, 0, -2] ], [ [0, 1, 0], [1, 0, 0], [0, 0, 1] ] ] ); ``` `luDecomposition([[11, 9, 24, 2], [1, 5, 2, 6], [3, 17, 18, 1], [2, 5, 7, 1]])` should return `[[[1, 0, 0, 0], [0.2727272727272727, 1, 0, 0], [0.09090909090909091, 0.2875, 1, 0], [0.18181818181818182, 0.23124999999999996, 0.0035971223021580693, 1]], [[11, 9, 24, 2], [0, 14.545454545454547, 11.454545454545455, 0.4545454545454546], [0, 0, -3.4749999999999996, 5.6875], [0, 0, 0, 0.510791366906476]], [[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]]]`. ```js assert.deepEqual( luDecomposition([ [11, 9, 24, 2], [1, 5, 2, 6], [3, 17, 18, 1], [2, 5, 7, 1] ]), [ [ [1, 0, 0, 0], [0.2727272727272727, 1, 0, 0], [0.09090909090909091, 0.2875, 1, 0], [0.18181818181818182, 0.23124999999999996, 0.0035971223021580693, 1] ], [ [11, 9, 24, 2], [0, 14.545454545454547, 11.454545454545455, 0.4545454545454546], [0, 0, -3.4749999999999996, 5.6875], [0, 0, 0, 0.510791366906476] ], [ [1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1] ] ] ); ``` `luDecomposition([[1, 1, 1], [4, 3, -1], [3, 5, 3]])` should return `[[[1, 0, 0], [0.75, 1, 0], [0.25, 0.09090909090909091, 1]], [[4, 3, -1], [0, 2.75, 3.75], [0, 0, 0.9090909090909091]], [[0, 1, 0], [0, 0, 1], [1, 0, 0]]]`. ```js assert.deepEqual( luDecomposition([ [1, 1, 1], [4, 3, -1], [3, 5, 3] ]), [ [ [1, 0, 0], [0.75, 1, 0], [0.25, 0.09090909090909091, 1] ], [ [4, 3, -1], [0, 2.75, 3.75], [0, 0, 0.9090909090909091] ], [ [0, 1, 0], [0, 0, 1], [1, 0, 0] ] ] ); ``` `luDecomposition([[1, -2, 3], [2, -5, 12], [0, 2, -10]])` should return `[[[1, 0, 0], [0, 1, 0], [0.5, 0.25, 1]], [[2, -5, 12], [0, 2, -10], [0, 0, -0.5]], [[0, 1, 0], [0, 0, 1], [1, 0, 0]]]`. ```js assert.deepEqual( luDecomposition([ [1, -2, 3], [2, -5, 12], [0, 2, -10] ]), [ [ [1, 0, 0], [0, 1, 0], [0.5, 0.25, 1] ], [ [2, -5, 12], [0, 2, -10], [0, 0, -0.5] ], [ [0, 1, 0], [0, 0, 1], [1, 0, 0] ] ] ); ``` # --seed-- ## --seed-contents-- ```js function luDecomposition(A) { } ``` # --solutions-- ```js function luDecomposition(A) { function dotProduct(a, b) { var sum = 0; for (var i = 0; i < a.length; i++) sum += a[i] * b[i] return sum; } function matrixMul(A, B) { var result = new Array(A.length); for (var i = 0; i < A.length; i++) result[i] = new Array(B[0].length) var aux = new Array(B.length); for (var j = 0; j < B[0].length; j++) { for (var k = 0; k < B.length; k++) aux[k] = B[k][j]; for (var i = 0; i < A.length; i++) result[i][j] = dotProduct(A[i], aux); } return result; } function pivotize(m) { var n = m.length; var id = new Array(n); for (var i = 0; i < n; i++) { id[i] = new Array(n); id[i].fill(0) id[i][i] = 1; } for (var i = 0; i < n; i++) { var maxm = m[i][i]; var row = i; for (var j = i; j < n; j++) if (m[j][i] > maxm) { maxm = m[j][i]; row = j; } if (i != row) { var tmp = id[i]; id[i] = id[row]; id[row] = tmp; } } return id; } var n = A.length; var L = new Array(n); for (var i = 0; i < n; i++) { L[i] = new Array(n); L[i].fill(0) } var U = new Array(n); for (var i = 0; i < n; i++) { U[i] = new Array(n); U[i].fill(0) } var P = pivotize(A); var A2 = matrixMul(P, A); for (var j = 0; j < n; j++) { L[j][j] = 1; for (var i = 0; i < j + 1; i++) { var s1 = 0; for (var k = 0; k < i; k++) s1 += U[k][j] * L[i][k]; U[i][j] = A2[i][j] - s1; } for (var i = j; i < n; i++) { var s2 = 0; for (var k = 0; k < j; k++) s2 += U[k][j] * L[i][k]; L[i][j] = (A2[i][j] - s2) / U[j][j]; } } return [L, U, P]; } ```