--- id: 587d8256367417b2b2512c7a title: Find the Minimum and Maximum Value in a Binary Search Tree challengeType: 1 videoUrl: '' localeTitle: Найти минимальное и максимальное значение в двоичном дереве поиска --- ## Description
Эта серия проблем приведет к созданию структуры данных дерева. Деревья - важная и универсальная структура данных в информатике. Конечно, их имя исходит из того факта, что при визуализации они очень похожи на деревья, с которыми мы знакомы в естественном мире. Структура данных дерева начинается с одного узла, обычно называемого корнем, и отсюда разветвляется на дополнительные узлы, каждый из которых может иметь больше дочерних узлов и т. Д. И т. Д. Структура данных обычно визуализируется с корневым узлом вверху; вы можете думать об этом, как естественное дерево перевернулось вверх дном. Сначала давайте опишем некоторую общую терминологию, с которой мы столкнемся с деревьями. Корневой узел - это вершина дерева. Точки данных в дереве называются узлами. Узлы с ветвями, ведущими к другим узлам, называются родителями узла, к которому ведет ветвь (дочерний элемент). Другие более сложные семейные термины применяются, как и следовало ожидать. Поддерево относится ко всем потомкам конкретного узла, ветви могут упоминаться как ребра, а листовые узлы - узлы в конце дерева, у которых нет детей. Наконец, обратите внимание, что деревья являются по своей природе рекурсивными структурами данных. То есть, любые дочерние узлы являются родителями собственного поддерева и так далее. Рекурсивный характер деревьев важен для понимания при разработке алгоритмов для общих операций дерева. Для начала обсудим конкретный тип дерева - двоичное дерево. Фактически, мы фактически обсудим конкретное двоичное дерево, двоичное дерево поиска. Давайте опишем, что это значит. Хотя структура данных дерева может иметь любое количество ветвей в одном узле, двоичное дерево может иметь только две ветви для каждого узла. Кроме того, двоичное дерево поиска упорядочено относительно дочерних поддеревьев, так что значение каждого узла в левом поддереве меньше или равно значению родительского узла, а значение каждого узла в правом поддереве равно больше или равно значению родительского узла. Очень полезно визуализировать эти отношения, чтобы лучше понять это:
Теперь это упорядоченное отношение очень легко увидеть. Обратите внимание, что каждое значение слева от корневого узла 8 меньше 8, а каждое значение справа больше 8. Также обратите внимание, что это отношение относится и к каждому из поддеревьев. Например, первый левый дочерний элемент является поддеревом. 3 является родительским узлом и имеет ровно два дочерних узла - по правилам, определяющим деревья двоичного поиска, мы знаем, даже не глядя, что левый ребенок этого узла (и любого его дочернего элемента) будет меньше 3, а правый child (и любой из его дочерних элементов) будет больше 3 (но также меньше корневого значения структуры) и т. д. Двоичные деревья поиска - очень распространенные и полезные структуры данных, поскольку они обеспечивают логарифмическое время в среднем случае для нескольких общих операций, таких как поиск, вставка и удаление. Инструкции: Мы начнем просто. Мы определили скелет структуры двоичного дерева поиска здесь в дополнение к функции для создания узлов для нашего дерева. Обратите внимание, что каждый узел может иметь левое и правое значение. Они будут назначены дочерние поддеревья, если они существуют. В нашем двоичном дереве поиска определите два метода: findMin и findMax . Эти методы должны возвращать минимальное и максимальное значение, хранящиеся в двоичном дереве поиска (не беспокойтесь о добавлении значений в дерево на данный момент, мы добавили некоторые в фоновом режиме). Если вы застряли, подумайте об инварианте, который должен быть истинным для двоичных деревьев поиска: каждое левое поддерево меньше или равно его родительскому элементу, и каждое правое поддерево больше или равно его родительскому. Давайте также скажем, что наше дерево может хранить только целочисленные значения. Если дерево пустое, любой метод должен возвращать значение null .
## Instructions
## Tests
```yml tests: - text: Существует структура данных BinarySearchTree . testString: 'assert((function() { var test = false; if (typeof BinarySearchTree !== "undefined") { test = new BinarySearchTree() }; return (typeof test == "object")})(), "The BinarySearchTree data structure exists.");' - text: Двоичное дерево поиска имеет метод под названием findMin . testString: 'assert((function() { var test = false; if (typeof BinarySearchTree !== "undefined") { test = new BinarySearchTree() } else { return false; }; return (typeof test.findMin == "function")})(), "The binary search tree has a method called findMin.");' - text: Двоичное дерево поиска имеет метод под названием findMax . testString: 'assert((function() { var test = false; if (typeof BinarySearchTree !== "undefined") { test = new BinarySearchTree() } else { return false; }; return (typeof test.findMax == "function")})(), "The binary search tree has a method called findMax.");' - text: Метод findMin возвращает минимальное значение в двоичном дереве поиска. testString: 'assert((function() { var test = false; if (typeof BinarySearchTree !== "undefined") { test = new BinarySearchTree() } else { return false; }; if (typeof test.findMin !== "function") { return false; }; test.add(4); test.add(1); test.add(7); test.add(87); test.add(34); test.add(45); test.add(73); test.add(8); return test.findMin() == 1; })(), "The findMin method returns the minimum value in the binary search tree.");' - text: Метод findMax возвращает максимальное значение в двоичном дереве поиска. testString: 'assert((function() { var test = false; if (typeof BinarySearchTree !== "undefined") { test = new BinarySearchTree() } else { return false; }; if (typeof test.findMax !== "function") { return false; }; test.add(4); test.add(1); test.add(7); test.add(87); test.add(34); test.add(45); test.add(73); test.add(8); return test.findMax() == 87; })(), "The findMax method returns the maximum value in the binary search tree.");' - text: findMin и findMax возвращают значение null для пустого дерева. testString: 'assert((function() { var test = false; if (typeof BinarySearchTree !== "undefined") { test = new BinarySearchTree() } else { return false; }; if (typeof test.findMin !== "function") { return false; }; if (typeof test.findMax !== "function") { return false; }; return (test.findMin() == null && test.findMax() == null) })(), "The findMin and findMax methods return null for an empty tree.");' ```
## Challenge Seed
```js var displayTree = (tree) => console.log(JSON.stringify(tree, null, 2)); function Node(value) { this.value = value; this.left = null; this.right = null; } function BinarySearchTree() { this.root = null; // change code below this line // change code above this line } ```
### After Test
```js console.info('after the test'); ```
## Solution
```js // solution required ```