--- id: 5900f3871000cf542c50fe9a title: 'Problem 27: Quadratic primes' challengeType: 5 forumTopicId: 301919 dashedName: problem-27-quadratic-primes --- # --description-- Euler discovered the remarkable quadratic formula:
$n^2 + n + 41$
It turns out that the formula will produce 40 primes for the consecutive integer values $0 \\le n \\le 39$. However, when $n = 40, 40^2 + 40 + 41 = 40(40 + 1) + 41$ is divisible by 41, and certainly when $n = 41, 41^2 + 41 + 41$ is clearly divisible by 41. The incredible formula $n^2 - 79n + 1601$ was discovered, which produces 80 primes for the consecutive values $0 \\le n \\le 79$. The product of the coefficients, −79 and 1601, is −126479. Considering quadratics of the form:
$n^2 + an + b$, where $|a| < range$ and $|b| \le range$
where $|n|$ is the modulus/absolute value of $n$
e.g. $|11| = 11$ and $|-4| = 4$
Find the product of the coefficients, $a$ and $b$, for the quadratic expression that produces the maximum number of primes for consecutive values of $n$, starting with $n = 0$. # --hints-- `quadraticPrimes(200)` should return a number. ```js assert(typeof quadraticPrimes(200) === 'number'); ``` `quadraticPrimes(200)` should return -4925. ```js assert(quadraticPrimes(200) == -4925); ``` `quadraticPrimes(500)` should return -18901. ```js assert(quadraticPrimes(500) == -18901); ``` `quadraticPrimes(800)` should return -43835. ```js assert(quadraticPrimes(800) == -43835); ``` `quadraticPrimes(1000)` should return -59231. ```js assert(quadraticPrimes(1000) == -59231); ``` # --seed-- ## --seed-contents-- ```js function quadraticPrimes(range) { return range; } quadraticPrimes(1000); ``` # --solutions-- ```js // solution required ```