--- id: 5900f4ab1000cf542c50ffbd title: 'Problem 318: 2011 nines' challengeType: 5 forumTopicId: 301974 dashedName: problem-318-2011-nines --- # --description-- Consider the real number √2+√3. When we calculate the even powers of √2+√3 we get: (√2+√3)2 = 9.898979485566356... (√2+√3)4 = 97.98979485566356... (√2+√3)6 = 969.998969071069263... (√2+√3)8 = 9601.99989585502907... (√2+√3)10 = 95049.999989479221... (√2+√3)12 = 940897.9999989371855... (√2+√3)14 = 9313929.99999989263... (√2+√3)16 = 92198401.99999998915... It looks like that the number of consecutive nines at the beginning of the fractional part of these powers is non-decreasing. In fact it can be proven that the fractional part of (√2+√3)2n approaches 1 for large n. Consider all real numbers of the form √p+√q with p and q positive integers and p<q, such that the fractional part of (√p+√q)2n approaches 1 for large n. Let C(p,q,n) be the number of consecutive nines at the beginning of the fractional part of (√p+√q)2n. Let N(p,q) be the minimal value of n such that C(p,q,n) ≥ 2011. Find ∑N(p,q) for p+q ≤ 2011. # --hints-- `euler318()` should return 709313889. ```js assert.strictEqual(euler318(), 709313889); ``` # --seed-- ## --seed-contents-- ```js function euler318() { return true; } euler318(); ``` # --solutions-- ```js // solution required ```