--- id: 5900f3ac1000cf542c50febf title: 'Problem 64: Odd period square roots' challengeType: 5 forumTopicId: 302176 dashedName: problem-64-odd-period-square-roots --- # --description-- All square roots are periodic when written as continued fractions and can be written in the form: $\\displaystyle \\quad \\quad \\sqrt{N}=a_0+\\frac 1 {a_1+\\frac 1 {a_2+ \\frac 1 {a3+ \\dots}}}$ For example, let us consider $\\sqrt{23}:$: $\\quad \\quad \\sqrt{23}=4+\\sqrt{23}-4=4+\\frac 1 {\\frac 1 {\\sqrt{23}-4}}=4+\\frac 1 {1+\\frac{\\sqrt{23}-3}7}$ If we continue we would get the following expansion: $\\displaystyle \\quad \\quad \\sqrt{23}=4+\\frac 1 {1+\\frac 1 {3+ \\frac 1 {1+\\frac 1 {8+ \\dots}}}}$ The process can be summarized as follows: $\\quad \\quad a_0=4, \\frac 1 {\\sqrt{23}-4}=\\frac {\\sqrt{23}+4} 7=1+\\frac {\\sqrt{23}-3} 7$ $\\quad \\quad a_1=1, \\frac 7 {\\sqrt{23}-3}=\\frac {7(\\sqrt{23}+3)} {14}=3+\\frac {\\sqrt{23}-3} 2$ $\\quad \\quad a_2=3, \\frac 2 {\\sqrt{23}-3}=\\frac {2(\\sqrt{23}+3)} {14}=1+\\frac {\\sqrt{23}-4} 7$ $\\quad \\quad a_3=1, \\frac 7 {\\sqrt{23}-4}=\\frac {7(\\sqrt{23}+4)} 7=8+\\sqrt{23}-4$ $\\quad \\quad a_4=8, \\frac 1 {\\sqrt{23}-4}=\\frac {\\sqrt{23}+4} 7=1+\\frac {\\sqrt{23}-3} 7$ $\\quad \\quad a_5=1, \\frac 7 {\\sqrt{23}-3}=\\frac {7 (\\sqrt{23}+3)} {14}=3+\\frac {\\sqrt{23}-3} 2$ $\\quad \\quad a_6=3, \\frac 2 {\\sqrt{23}-3}=\\frac {2(\\sqrt{23}+3)} {14}=1+\\frac {\\sqrt{23}-4} 7$ $\\quad \\quad a_7=1, \\frac 7 {\\sqrt{23}-4}=\\frac {7(\\sqrt{23}+4)} {7}=8+\\sqrt{23}-4$ It can be seen that the sequence is repeating. For conciseness, we use the notation $\\sqrt{23}=\[4;(1,3,1,8)]$, to indicate that the block (1,3,1,8) repeats indefinitely. The first ten continued fraction representations of (irrational) square roots are: $\\quad \\quad \\sqrt{2}=\[1;(2)]$, period = 1 $\\quad \\quad \\sqrt{3}=\[1;(1,2)]$, period = 2 $\\quad \\quad \\sqrt{5}=\[2;(4)]$, period = 1 $\\quad \\quad \\sqrt{6}=\[2;(2,4)]$, period = 2 $\\quad \\quad \\sqrt{7}=\[2;(1,1,1,4)]$, period = 4 $\\quad \\quad \\sqrt{8}=\[2;(1,4)]$, period = 2 $\\quad \\quad \\sqrt{10}=\[3;(6)]$, period = 1 $\\quad \\quad \\sqrt{11}=\[3;(3,6)]$, period = 2 $\\quad \\quad \\sqrt{12}=\[3;(2,6)]$, period = 2 $\\quad \\quad \\sqrt{13}=\[3;(1,1,1,1,6)]$, period = 5 Exactly four continued fractions, for $N \\le 13$, have an odd period. How many continued fractions for $N \\le n$ have an odd period? # --hints-- `oddPeriodSqrts(13)` should return a number. ```js assert(typeof oddPeriodSqrts(13) === 'number'); ``` `oddPeriodSqrts(500)` should return `83`. ```js assert.strictEqual(oddPeriodSqrts(500), 83); ``` `oddPeriodSqrts(1000)` should return `152`. ```js assert.strictEqual(oddPeriodSqrts(1000), 152); ``` `oddPeriodSqrts(5000)` should return `690`. ```js assert.strictEqual(oddPeriodSqrts(5000), 690); ``` `oddPeriodSqrts(10000)` should return `1322`. ```js assert.strictEqual(oddPeriodSqrts(10000), 1322); ``` # --seed-- ## --seed-contents-- ```js function oddPeriodSqrts(n) { return true; } oddPeriodSqrts(13); ``` # --solutions-- ```js function oddPeriodSqrts(n) { // Based on https://www.mathblog.dk/project-euler-continued-fractions-odd-period/ function getPeriod(num) { let period = 0; let m = 0; let d = 1; let a = Math.floor(Math.sqrt(num)); const a0 = a; while (2 * a0 !== a) { m = d * a - m; d = Math.floor((num - m ** 2) / d); a = Math.floor((Math.sqrt(num) + m) / d); period++; } return period; } function isPerfectSquare(num) { return Number.isInteger(Math.sqrt(num)); } let counter = 0; for (let i = 2; i <= n; i++) { if (!isPerfectSquare(i)) { if (getPeriod(i) % 2 !== 0) { counter++; } } } return counter; } ```