--- id: 587d8257367417b2b2512c7e title: Usa la ricerca in profondità in un alvero di ricerca binario challengeType: 1 forumTopicId: 301719 dashedName: use-depth-first-search-in-a-binary-search-tree --- # --description-- Sappiamo come cercare un albero di ricerca binario per un valore specifico. Ma cosa succede se vogliamo solo esplorare l'intero albero? O cosa succede se non abbiamo un albero ordinato e dobbiamo solo cercare un valore? Qui introdurremo alcuni metodi di per traversare l'alvero che possono essere utilizzati per esplorare strutture dati ad albero. Il primo è la prima ricerca in profondità. Nella ricerca in profondità, un dato sotto-albero è esplorato il più profondamente possibile prima che la ricerca continui su un altro sotto-albero. Ci sono tre modi per farlo: In ordine: Iniziare la ricerca al nodo più a sinistra e terminare al nodo più a destra. Pre-ordine: Esplora tutte le radici prima delle foglie. Post-order: Esplora tutte le foglie prima delle radici. Come si può immaginare, è possibile scegliere diversi metodi di ricerca a seconda del tipo di dati che l'albero sta memorizzando e quello che stai cercando. Per un albero di ricerca binario, un attraversamento in ordine restituisce i nodi ordinati. # --instructions-- Qui creeremo questi tre metodi di ricerca sul nostro albero di ricerca binario. La ricerca di profondità prima è un'operazione intrinsecamente ricorsiva che continua ad esplorare ulteriori sottalberi, a condizione che siano presenti nodi figli. Una volta che capisci questo concetto fondamentale, si può semplicemente riorganizzare l'ordine in cui si esplorano i nodi e sotto-alberi per produrre una delle tre ricerche sopra. Ad esempio, nella ricerca post-ordine vorremmo arrivare ad un nodo foglia prima di iniziare a restituire uno dei nodi stessi, mentre in pre-ordine di ricerca vorremmo restituire i nodi prima, e poi continuare a ricorsare giù l'albero. Definisci i metodi `inorder`, `preorder`e `postorder` sul nostro albero. Ognuno di questi metodi dovrebbe restituire una serie di oggetti che rappresentano il traversale ad albero. Assicurati di restituire i valori interi ad ogni nodo dell'array, non i nodi stessi. Infine, restituisci `null` se l'albero è vuoto. # --hints-- La struttura dati `BinarySearchTree` dovrebbe esistere. ```js assert( (function () { var test = false; if (typeof BinarySearchTree !== 'undefined') { test = new BinarySearchTree(); } return typeof test == 'object'; })() ); ``` L'albero di ricerca binario dovrebbe avere un metodo chiamato `inorder`. ```js assert( (function () { var test = false; if (typeof BinarySearchTree !== 'undefined') { test = new BinarySearchTree(); } else { return false; } return typeof test.inorder == 'function'; })() ); ``` L'albero di ricerca binario dovrebbe avere un metodo chiamato `preorder`. ```js assert( (function () { var test = false; if (typeof BinarySearchTree !== 'undefined') { test = new BinarySearchTree(); } else { return false; } return typeof test.preorder == 'function'; })() ); ``` L'albero di ricerca binario dovrebbe avere un metodo chiamato `postorder`. ```js assert( (function () { var test = false; if (typeof BinarySearchTree !== 'undefined') { test = new BinarySearchTree(); } else { return false; } return typeof test.postorder == 'function'; })() ); ``` Il metodo `inorder` dovrebbe restituire un array dei valori del nodo che risultano da un traversamento inorder. ```js assert( (function () { var test = false; if (typeof BinarySearchTree !== 'undefined') { test = new BinarySearchTree(); } else { return false; } if (typeof test.inorder !== 'function') { return false; } test.add(7); test.add(1); test.add(9); test.add(0); test.add(3); test.add(8); test.add(10); test.add(2); test.add(5); test.add(4); test.add(6); return test.inorder().join('') == '012345678910'; })() ); ``` Il metodo `preorder` dovrebbe restituire un array dei valori del nodo che risultano da un attraversamento preorder. ```js assert( (function () { var test = false; if (typeof BinarySearchTree !== 'undefined') { test = new BinarySearchTree(); } else { return false; } if (typeof test.preorder !== 'function') { return false; } test.add(7); test.add(1); test.add(9); test.add(0); test.add(3); test.add(8); test.add(10); test.add(2); test.add(5); test.add(4); test.add(6); return test.preorder().join('') == '710325469810'; })() ); ``` Il metodo `postorder` dovrebbe restituire un array dei valori del nodo che risultano da un traversamento postordine. ```js assert( (function () { var test = false; if (typeof BinarySearchTree !== 'undefined') { test = new BinarySearchTree(); } else { return false; } if (typeof test.postorder !== 'function') { return false; } test.add(7); test.add(1); test.add(9); test.add(0); test.add(3); test.add(8); test.add(10); test.add(2); test.add(5); test.add(4); test.add(6); return test.postorder().join('') == '024653181097'; })() ); ``` Il metodo `inorder` dovrebbe restituire `null` per un albero vuoto. ```js assert( (function () { var test = false; if (typeof BinarySearchTree !== 'undefined') { test = new BinarySearchTree(); } else { return false; } if (typeof test.inorder !== 'function') { return false; } return test.inorder() == null; })() ); ``` Il metodo `preorder` dovrebbe restituire `null` per un albero vuoto. ```js assert( (function () { var test = false; if (typeof BinarySearchTree !== 'undefined') { test = new BinarySearchTree(); } else { return false; } if (typeof test.preorder !== 'function') { return false; } return test.preorder() == null; })() ); ``` Il metodo `postorder` dovrebbe restituire `null` per un albero vuoto. ```js assert( (function () { var test = false; if (typeof BinarySearchTree !== 'undefined') { test = new BinarySearchTree(); } else { return false; } if (typeof test.postorder !== 'function') { return false; } return test.postorder() == null; })() ); ``` # --seed-- ## --after-user-code-- ```js BinarySearchTree.prototype = Object.assign( BinarySearchTree.prototype, { add: function(value) { function searchTree(node) { if (value < node.value) { if (node.left == null) { node.left = new Node(value); return; } else if (node.left != null) { return searchTree(node.left); } } else if (value > node.value) { if (node.right == null) { node.right = new Node(value); return; } else if (node.right != null) { return searchTree(node.right); } } else { return null; } } var node = this.root; if (node == null) { this.root = new Node(value); return; } else { return searchTree(node); } } } ); ``` ## --seed-contents-- ```js var displayTree = tree => console.log(JSON.stringify(tree, null, 2)); function Node(value) { this.value = value; this.left = null; this.right = null; } function BinarySearchTree() { this.root = null; // Only change code below this line // Only change code above this line } ``` # --solutions-- ```js var displayTree = tree => console.log(JSON.stringify(tree, null, 2)); function Node(value) { this.value = value; this.left = null; this.right = null; } function BinarySearchTree() { this.root = null; this.result = []; this.inorder = function(node) { if (!node) node = this.root; if (!node) return null; if (node.left) this.inorder(node.left); this.result.push(node.value); if (node.right) this.inorder(node.right); return this.result; }; this.preorder = function(node) { if (!node) node = this.root; if (!node) return null; this.result.push(node.value); if (node.left) this.preorder(node.left); if (node.right) this.preorder(node.right); return this.result; }; this.postorder = function(node) { if (!node) node = this.root; if (!node) return null; if (node.left) this.postorder(node.left); if (node.right) this.postorder(node.right); this.result.push(node.value); return this.result; }; } ```