--- id: 5900f3f51000cf542c50ff08 title: 'Problem 137: Fibonacci golden nuggets' challengeType: 5 forumTopicId: 301765 dashedName: problem-137-fibonacci-golden-nuggets --- # --description-- Consider the infinite polynomial series $A_{F}(x) = xF_1 + x^2F_2 + x^3F_3 + \ldots$, where $F_k$ is the $k$th term in the Fibonacci sequence: $1, 1, 2, 3, 5, 8, \ldots$; that is, $F_k = F_{k − 1} + F_{k − 2}, F_1 = 1$ and $F_2 = 1$. For this problem we shall be interested in values of $x$ for which $A_{F}(x)$ is a positive integer. Surprisingly $$\begin{align} A_F(\frac{1}{2}) & = (\frac{1}{2}) × 1 + {(\frac{1}{2})}^2 × 1 + {(\frac{1}{2})}^3 × 2 + {(\frac{1}{2})}^4 × 3 + {(\frac{1}{2})}^5 × 5 + \cdots \\\\ & = \frac{1}{2} + \frac{1}{4} + \frac{2}{8} + \frac{3}{16} + \frac{5}{32} + \cdots \\\\ & = 2 \end{align}$$ The corresponding values of $x$ for the first five natural numbers are shown below. | $x$ | $A_F(x)$ | |---------------------------|----------| | $\sqrt{2} − 1$ | $1$ | | $\frac{1}{2}$ | $2$ | | $\frac{\sqrt{13} − 2}{3}$ | $3$ | | $\frac{\sqrt{89} − 5}{8}$ | $4$ | | $\frac{\sqrt{34} − 3}{5}$ | $5$ | We shall call $A_F(x)$ a golden nugget if $x$ is rational, because they become increasingly rarer; for example, the 10th golden nugget is 74049690. Find the 15th golden nugget. # --hints-- `goldenNugget()` should return `1120149658760`. ```js assert.strictEqual(goldenNugget(), 1120149658760); ``` # --seed-- ## --seed-contents-- ```js function goldenNugget() { return true; } goldenNugget(); ``` # --solutions-- ```js // solution required ```