--- id: 59880443fb36441083c6c20e title: 欧拉方法 challengeType: 5 videoUrl: '' --- # --description--

欧拉方法在数值上近似具有给定初始值的一阶常微分方程(ODE)的解。它是解决初始值问题(IVP)的一种显式方法,如维基百科页面中所述

ODE必须以下列形式提供:

:: $ \ frac {dy(t)} {dt} = f(t,y(t))$

具有初始值

:: $ y(t_0)= y_0 $

为了得到数值解,我们用有限差分近似替换LHS上的导数:

:: $ \ frac {dy(t)} {dt} \ approx \ frac {y(t + h)-y(t)} {h} $

然后解决$ y(t + h)$:

:: $ y(t + h)\ about y(t)+ h \,\ frac {dy(t)} {dt} $

这是一样的

:: $ y(t + h)\ about y(t)+ h \,f(t,y(t))$

然后迭代解决方案规则是:

:: $ y_ {n + 1} = y_n + h \,f(t_n,y_n)$

其中$ h $是步长,是解决方案准确性最相关的参数。较小的步长会提高精度,但也会增加计算成本,因此必须根据手头的问题手工挑选。

示例:牛顿冷却法

Newton的冷却定律描述了在温度$ T_R $的环境中初始温度$ T(t_0)= T_0 $的对象如何冷却:

:: $ \ frac {dT(t)} {dt} = -k \,\ Delta T $

要么

:: $ \ frac {dT(t)} {dt} = -k \,(T(t) - T_R)$

它表示物体的冷却速率$ \ frac {dT(t)} {dt} $与周围环境的当前温差$ \ Delta T =(T(t) - T_R)$成正比

我们将与数值近似进行比较的解析解是

:: $ T(t)= T_R +(T_0 - T_R)\; Ë^ { -克拉} $

任务:

实现欧拉方法的一个例程,然后用它来解决牛顿冷却定律的给定例子,它有三种不同的步长:

:: * 2秒

:: * 5秒和

:: * 10秒

并与分析解决方案进行比较。

初始值:

:: *初始温度$ T_0 $应为100°C

:: *室温$ T_R $应为20°C

:: *冷却常数$ k $应为0.07

:: *计算的时间间隔应为0s──►100s

# --hints-- `eulersMethod`是一个函数。 ```js assert(typeof eulersMethod === 'function'); ``` `eulersMethod(0, 100, 100, 10)`应该返回一个数字。 ```js assert(typeof eulersMethod(0, 100, 100, 10) === 'number'); ``` `eulersMethod(0, 100, 100, 10)`应返回20.0424631833732。 ```js assert.equal(eulersMethod(0, 100, 100, 2), 20.0424631833732); ``` `eulersMethod(0, 100, 100, 10)`应返回20.01449963666907。 ```js assert.equal(eulersMethod(0, 100, 100, 5), 20.01449963666907); ``` `eulersMethod(0, 100, 100, 10)`应返回20.000472392。 ```js assert.equal(eulersMethod(0, 100, 100, 10), 20.000472392); ``` # --solutions--