--- id: 587d8258367417b2b2512c7f title: Use Breadth First Search in a Binary Search Tree challengeType: 1 forumTopicId: 301718 dashedName: use-breadth-first-search-in-a-binary-search-tree --- # --description-- Here we will introduce another tree traversal method: breadth-first search. In contrast to the depth-first search methods from the last challenge, breadth-first search explores all the nodes in a given level within a tree before continuing on to the next level. Typically, queues are utilized as helper data structures in the design of breadth-first search algorithms. In this method, we start by adding the root node to a queue. Then we begin a loop where we dequeue the first item in the queue, add it to a new array, and then inspect both its child subtrees. If its children are not null, they are each enqueued. This process continues until the queue is empty. # --instructions-- Let's create a breadth-first search method in our tree called `levelOrder`. This method should return an array containing the values of all the tree nodes, explored in a breadth-first manner. Be sure to return the values in the array, not the nodes themselves. A level should be traversed from left to right. Next, let's write a similar method called `reverseLevelOrder` which performs the same search but in the reverse direction (right to left) at each level. # --hints-- The `BinarySearchTree` data structure should exist. ```js assert( (function () { var test = false; if (typeof BinarySearchTree !== 'undefined') { test = new BinarySearchTree(); } return typeof test == 'object'; })() ); ``` The binary search tree should have a method called `levelOrder`. ```js assert( (function () { var test = false; if (typeof BinarySearchTree !== 'undefined') { test = new BinarySearchTree(); } else { return false; } return typeof test.levelOrder == 'function'; })() ); ``` The binary search tree should have a method called `reverseLevelOrder`. ```js assert( (function () { var test = false; if (typeof BinarySearchTree !== 'undefined') { test = new BinarySearchTree(); } else { return false; } return typeof test.reverseLevelOrder == 'function'; })() ); ``` The `levelOrder` method should return an array of the tree node values explored in level order. ```js assert( (function () { var test = false; if (typeof BinarySearchTree !== 'undefined') { test = new BinarySearchTree(); } else { return false; } if (typeof test.levelOrder !== 'function') { return false; } test.add(7); test.add(1); test.add(9); test.add(0); test.add(3); test.add(8); test.add(10); test.add(2); test.add(5); test.add(4); test.add(6); return test.levelOrder().join('') == '719038102546'; })() ); ``` The `reverseLevelOrder` method should return an array of the tree node values explored in reverse level order. ```js assert( (function () { var test = false; if (typeof BinarySearchTree !== 'undefined') { test = new BinarySearchTree(); } else { return false; } if (typeof test.reverseLevelOrder !== 'function') { return false; } test.add(7); test.add(1); test.add(9); test.add(0); test.add(3); test.add(8); test.add(10); test.add(2); test.add(5); test.add(4); test.add(6); return test.reverseLevelOrder().join('') == '791108305264'; })() ); ``` The `levelOrder` method should return `null` for an empty tree. ```js assert( (function () { var test = false; if (typeof BinarySearchTree !== 'undefined') { test = new BinarySearchTree(); } else { return false; } if (typeof test.levelOrder !== 'function') { return false; } return test.levelOrder() == null; })() ); ``` The `reverseLevelOrder` method should return `null` for an empty tree. ```js assert( (function () { var test = false; if (typeof BinarySearchTree !== 'undefined') { test = new BinarySearchTree(); } else { return false; } if (typeof test.reverseLevelOrder !== 'function') { return false; } return test.reverseLevelOrder() == null; })() ); ``` # --seed-- ## --after-user-code-- ```js BinarySearchTree.prototype = Object.assign( BinarySearchTree.prototype, { add: function(value) { function searchTree(node) { if (value < node.value) { if (node.left == null) { node.left = new Node(value); return; } else if (node.left != null) { return searchTree(node.left); } } else if (value > node.value) { if (node.right == null) { node.right = new Node(value); return; } else if (node.right != null) { return searchTree(node.right); } } else { return null; } } var node = this.root; if (node == null) { this.root = new Node(value); return; } else { return searchTree(node); } } } ); ``` ## --seed-contents-- ```js var displayTree = tree => console.log(JSON.stringify(tree, null, 2)); function Node(value) { this.value = value; this.left = null; this.right = null; } function BinarySearchTree() { this.root = null; // Only change code below this line // Only change code above this line } ``` # --solutions-- ```js var displayTree = tree => console.log(JSON.stringify(tree, null, 2)); function Node(value) { this.value = value; this.left = null; this.right = null; } function BinarySearchTree() { this.root = null; // Only change code below this line this.levelOrder = (root = this.root) => { if(!root) return null; let queue = [root]; let results = []; while(queue.length > 0) { let node = queue.shift(); results.push(node.value); if(node.left) queue.push(node.left); if(node.right) queue.push(node.right); } return results; } this.reverseLevelOrder = (root = this.root) => { if(!root) return null; let queue = [root]; let results = [] ; while ( queue.length > 0) { let node = queue.shift(); results.push(node.value); if(node.right) queue.push(node.right); if(node.left ) queue.push(node.left); } return results; } // Only change code above this line } ```