--- title: Hash Tables localeTitle: Хэш-таблицы --- ## Хэш-таблицы Хэш-таблица (или хэш-карта) представляет собой структуру данных, которая может сопоставлять ключи с значениями. В хеш-таблице используется хэш-функция для вычисления индекса в массив ведер, из которых можно найти нужные значения. Временная сложность хорошо определенной функции Хэша может быть O (1). Хэш-таблица (хэш-карта) представляет собой структуру данных, которая реализует абстрактный тип абстрактных массивов, структуру, которая может сопоставлять ключи со значениями. Хэш-таблица использует хеш-функцию для вычисления индекса в массив ведер или слотов, из которого можно найти желаемое значение. ![пример хеш-таблицы](https://github.com/TomerPacific/fccGuideImages/blob/master/315px-Hash_table_3_1_1_0_1_0_0_SP.svg.png?raw=true) Некоторые важные свойства Hash Table - 1) Значения не сохраняются в отсортированном порядке. 2) В хэш-таблице нужно также обрабатывать потенциальные столкновения. Это часто делается путем цепочки, что означает создание связанного списка всех значений, ключи которых сопоставляются с определенным индексом. Реализация таблицы хешей Хэш-таблица традиционно реализуется с массивом связанных списков. Когда мы хотим вставить пару ключ / значение, мы сопоставляем ключ с индексом в массиве с помощью хэш-функции. Затем значение вставляется в связанный список в этой позиции. Идея хеширования состоит в том, чтобы распределять записи (пары ключ / значение) по массиву ведер. Учитывая ключ, алгоритм вычисляет индекс, который указывает, где можно найти запись: ``` index = f(key, array_size) ``` Часто это делается в два этапа: ``` hash = hashfunc(key) index = hash % array_size ``` В этом методе хэш не зависит от размера массива, а затем сводится к индексу (число от 0 до array\_size - 1) с использованием оператора modulo (%). Рассмотрим строку S. Вам необходимо подсчитать частоту всех символов в этой строке. ``` string S = “ababcd” ``` Самый простой способ сделать это - перебрать все возможные символы и подсчитать их частоту один за другим. Сложность времени этого подхода O (26 \* N), где N - размер строки, и имеется 26 возможных символов. ``` void countFre(string S) { for(char c = 'a';c <= 'z';++c) { int frequency = 0; for(int i = 0;i < S.length();++i) if(S[i] == c) frequency++; cout << c << ' ' << frequency << endl; } } ``` Вывод ``` a 2 b 2 c 1 d 1 e 0 f 0 … z 0 ``` Давайте применим хеширование к этой проблеме. Возьмите частоту массива размером 26 и хэш 26 символов с индексами массива с помощью хэш-функции. Затем перебираем строку и увеличиваем значение в частоте по соответствующему индексу для каждого символа. Сложность этого подхода - O (N), где N - размер строки. ``` int Frequency[26]; int hashFunc(char c) { return (c - 'a'); } void countFre(string S) { for(int i = 0;i < S.length();++i) { int index = hashFunc(S[i]); Frequency[index]++; } for(int i = 0;i < 26;++i) cout << (char)(i+'a') << ' ' << Frequency[i] << endl; } ``` Вывод ``` a 2 b 2 c 1 d 1 e 0 f 0 … z 0 ``` ### Хэш-столкновение Когда вы используете хэш-карту, вы должны предположить, что хеш-коллизии неизбежны, так как вы будете использовать хэш-карту, которая значительно меньше по размеру, чем объем данных, которые у вас есть. Двумя основными подходами к решению этих столкновений являются цепочка и открытая адресация. #### Цепной Один из способов разрешения хеш-коллизий - использование цепочки. Это означает, что для каждого сопоставления значений ключа в хэш-таблице поле значения не будет содержать только одну ячейку данных, а скорее связанный список данных. В примере, показанном на рисунке ниже, вы можете видеть, что Сандра Ди добавляется в качестве другого элемента к ключу 152 после Джона Смита. ![пример цепочки в хеш-таблице](https://github.com/TomerPacific/fccGuideImages/blob/master/620px-Hash_table_5_0_1_1_1_1_0_LL.svg.png?raw=true) Основным препятствием для цепочки является увеличение временной сложности. Это означает, что вместо свойств O (1) регулярной хеш-таблицы каждое действие будет занимать больше времени, поскольку нам нужно пересечь связанный список. #### Открытая адресация Другой способ разрешения хэш-коллизий - использовать открытую адресацию. В этом методе, когда значение отображается на уже занятый ключ, вы перемещаетесь по соседним клавишам хэш-таблицы определенным образом, пока не найдете ключ с пустым значением. В примере, показанном на изображении ниже, Сандра Ди отображается на ключ 153, хотя ее значение должно быть отображено на 152. ![пример открытой адресации в хеш-таблице](https://github.com/TomerPacific/fccGuideImages/blob/master/380px-Hash_table_5_0_1_1_1_1_0_SP.svg.png?raw=true) Основная проблема открытой адресации заключается в том, что, когда нужно искать значения, они могут оказаться не такими, какие вы ожидаете от них (сопоставление ключей). Поэтому вам нужно пройти части хэш-таблицы, чтобы найти нужное вам значение, что привело к увеличению временной сложности. #### Сложность времени Очень важно отметить, что хеш-таблицы амортизируют постоянную сложность, т. Е. В среднем случае сложность будет равна O (1). В худшем случае, если слишком много элементов было хэшировано в один и тот же ключ, это может иметь временную сложность O (n). ### Дополнительная информация: [Дополнительная информация о Hash Tables - Wiki](https://en.wikipedia.org/wiki/Hash_table) [Сравнение между таблицей хэшей и STL-картой](http://www.geeksforgeeks.org/hash-table-vs-stl-map/) #### Источник [Основы Hash Tables - HackerEarth](https://www.hackerearth.com/practice/data-structures/hash-tables/basics-of-hash-tables/tutorial/)