--- id: 5900f3ac1000cf542c50febf challengeType: 5 title: 'Problem 64: Odd period square roots' forumTopicId: 302176 --- ## Description
All square roots are periodic when written as continued fractions and can be written in the form: $\displaystyle \quad \quad \sqrt{N}=a_0+\frac 1 {a_1+\frac 1 {a_2+ \frac 1 {a3+ \dots}}}$ For example, let us consider $\sqrt{23}:$: $\quad \quad \sqrt{23}=4+\sqrt{23}-4=4+\frac 1 {\frac 1 {\sqrt{23}-4}}=4+\frac 1 {1+\frac{\sqrt{23}-3}7}$ If we continue we would get the following expansion: $\displaystyle \quad \quad \sqrt{23}=4+\frac 1 {1+\frac 1 {3+ \frac 1 {1+\frac 1 {8+ \dots}}}}$ The process can be summarized as follows: $\quad \quad a_0=4, \frac 1 {\sqrt{23}-4}=\frac {\sqrt{23}+4} 7=1+\frac {\sqrt{23}-3} 7$ $\quad \quad a_1=1, \frac 7 {\sqrt{23}-3}=\frac {7(\sqrt{23}+3)} {14}=3+\frac {\sqrt{23}-3} 2$ $\quad \quad a_2=3, \frac 2 {\sqrt{23}-3}=\frac {2(\sqrt{23}+3)} {14}=1+\frac {\sqrt{23}-4} 7$ $\quad \quad a_3=1, \frac 7 {\sqrt{23}-4}=\frac {7(\sqrt{23}+4)} 7=8+\sqrt{23}-4$ $\quad \quad a_4=8, \frac 1 {\sqrt{23}-4}=\frac {\sqrt{23}+4} 7=1+\frac {\sqrt{23}-3} 7$ $\quad \quad a_5=1, \frac 7 {\sqrt{23}-3}=\frac {7 (\sqrt{23}+3)} {14}=3+\frac {\sqrt{23}-3} 2$ $\quad \quad a_6=3, \frac 2 {\sqrt{23}-3}=\frac {2(\sqrt{23}+3)} {14}=1+\frac {\sqrt{23}-4} 7$ $\quad \quad a_7=1, \frac 7 {\sqrt{23}-4}=\frac {7(\sqrt{23}+4)} {7}=8+\sqrt{23}-4$ It can be seen that the sequence is repeating. For conciseness, we use the notation $\sqrt{23}=[4;(1,3,1,8)]$, to indicate that the block (1,3,1,8) repeats indefinitely. The first ten continued fraction representations of (irrational) square roots are: $\quad \quad \sqrt{2}=[1;(2)]$, period = 1 $\quad \quad \sqrt{3}=[1;(1,2)]$, period = 2 $\quad \quad \sqrt{5}=[2;(4)]$, period = 1 $\quad \quad \sqrt{6}=[2;(2,4)]$, period = 2 $\quad \quad \sqrt{7}=[2;(1,1,1,4)]$, period = 4 $\quad \quad \sqrt{8}=[2;(1,4)]$, period = 2 $\quad \quad \sqrt{10}=[3;(6)]$, period = 1 $\quad \quad \sqrt{11}=[3;(3,6)]$, period = 2 $\quad \quad \sqrt{12}=[3;(2,6)]$, period = 2 $\quad \quad \sqrt{13}=[3;(1,1,1,1,6)]$, period = 5 Exactly four continued fractions, for $N \le 13$, have an odd period. How many continued fractions for $N \le 10\,000$ have an odd period?
## Instructions
## Tests
```yml tests: - text: oddPeriodSqrts() should return a number. testString: assert(typeof oddPeriodSqrts() === 'number'); - text: oddPeriodSqrts() should return 1322. testString: assert.strictEqual(oddPeriodSqrts(), 1322); ```
## Challenge Seed
```js function oddPeriodSqrts() { return true; } oddPeriodSqrts(); ```
## Solution
```js // solution required ```