--- title: Derivative localeTitle: Derivado --- ## Derivado **Definição** : A derivada da função f (x) em relação a x, representada por f '(x) é definida como: ![Fórmula limite para derivado](http://tutorial.math.lamar.edu/Classes/CalcI/DefnOfDerivative_files/eq0006M.gif) onde h é uma mudança infinitamente pequena no valor da entrada, representada pela função limite (h está se aproximando de zero) Na fórmula acima, notamos que a derivada é apenas a inclinação de uma tangente de um gráfico de x em qualquer valor de entrada. **Propriedade importante da função e é derivada:** Uma função f (x) é diferenciável em x = a, se e somente se, a função é contínua em f (x = a). Inversamente, se uma derivada de uma função existir em um ponto a, então a função deve ser contínua em f (x = a). ## Propriedades de Derivativos 1. **Linearidade** Suponha que f (x) e g (x) sejam funções diferenciáveis ​​e aeb sejam números reais. Então a função ![Funtion de entrada](http://www.hyper-ad.com/tutoring/math/calculus/images/prop_deriv589.gif) é diferenciável como ![Derivada de saída](http://www.hyper-ad.com/tutoring/math/calculus/images/prop_deriv590.gif) 2. **Regra do produto** Para uma dada função h (x) = f (x) \* g (x), podemos aplicar a regra do produto para encontrar a derivada da função h (x) como ![Regra do produto](http://www.hyper-ad.com/tutoring/math/calculus/images/prop_deriv599.gif) Por favor, veja o link em Mais informações (Propriedades do derivado) para prova desta propriedade 3. **Regra do quociente** A regra do quociente dá a derivada de uma função dividida por outra. Seja h (x) = f (x) / g (x) (onde g (x) não pode ser zero) então a derivada de h (x) pode ser encontrada usando o seguinte: ![Regra do quociente](http://www.hyper-ad.com/tutoring/math/calculus/images/prop_deriv605.gif) Por favor, veja o link em Mais informações (Propriedades do derivado) para prova desta propriedade 4. **Regra da Cadeia** A regra da cadeia é usada no caso de uma função de uma função, também conhecida como uma função composta ou como uma composição de funções. Representação da função composta de entrada: ![Função composta](http://www.hyper-ad.com/tutoring/math/calculus/images/prop_deriv609.gif) Em seguida, a derivada de saída pode ser encontrada usando a seguinte regra: ![Regra da Cadeia](http://www.hyper-ad.com/tutoring/math/calculus/images/prop_deriv616.gif) Por favor, veja o link em Mais informações (Propriedades do derivado) para prova desta propriedade #### Mais Informações: http://tutorial.math.lamar.edu/Classes/CalcI/DerivativeIntro.aspx http://tutorial.math.lamar.edu/Classes/CalcI/DefnOfDerivative.aspx Informações sobre derivados (provas incluídas): http://www.hyper-ad.com/tutoring/math/calculus/Properties _of_ Derivatives.html **Nota** : Imagens tiradas de http://www.hyper-ad.com/ e http://tutorial.math.lamar.edu/