--- id: 5900f4b21000cf542c50ffc5 title: 'Problem 326: Modulo Summations' challengeType: 5 forumTopicId: 301983 dashedName: problem-326-modulo-summations --- # --description-- Let $a_n$ be a sequence recursively defined by: $a_1 = 1$, $\displaystyle a_n = \left(\sum_{k = 1}^{n - 1} k \times a_k\right)\bmod n$. So the first 10 elements of $a_n$ are: 1, 1, 0, 3, 0, 3, 5, 4, 1, 9. Let $f(N, M)$ represent the number of pairs $(p, q)$ such that: $$ 1 \le p \le q \le N \\; \text{and} \\; \left(\sum_{i = p}^q a_i\right)\bmod M = 0$$ It can be seen that $f(10, 10) = 4$ with the pairs (3,3), (5,5), (7,9) and (9,10). You are also given that $f({10}^4, {10}^3) = 97\\,158$. Find $f({10}^{12}, {10}^6)$. # --hints-- `moduloSummations()` should return `1966666166408794400`. ```js assert.strictEqual(moduloSummations(), 1966666166408794400); ``` # --seed-- ## --seed-contents-- ```js function moduloSummations() { return true; } moduloSummations(); ``` # --solutions-- ```js // solution required ```