--- id: 5900f48d1000cf542c50ffa0 title: 'Problem 289: Eulerian Cycles' challengeType: 5 forumTopicId: 301940 dashedName: problem-289-eulerian-cycles --- # --description-- Let $C(x,y)$ be a circle passing through the points ($x$, $y$), ($x$, $y + 1$), ($x + 1$, $y$) and ($x + 1$, $y + 1$). For positive integers $m$ and $n$, let $E(m,n)$ be a configuration which consists of the $m·n$ circles: { $C(x,y)$: $0 ≤ x < m$, $0 ≤ y < n$, $x$ and $y$ are integers } An Eulerian cycle on $E(m,n)$ is a closed path that passes through each arc exactly once. Many such paths are possible on $E(m,n)$, but we are only interested in those which are not self-crossing: A non-crossing path just touches itself at lattice points, but it never crosses itself. The image below shows $E(3,3)$ and an example of an Eulerian non-crossing path. Eulerian cycle E(3, 3) and Eulerian non-crossing path Let $L(m,n)$ be the number of Eulerian non-crossing paths on $E(m,n)$. For example, $L(1,2) = 2$, $L(2,2) = 37$ and $L(3,3) = 104290$. Find $L(6,10)\bmod {10}^{10}$. # --hints-- `eulerianCycles()` should return `6567944538`. ```js assert.strictEqual(eulerianCycles(), 6567944538); ``` # --seed-- ## --seed-contents-- ```js function eulerianCycles() { return true; } eulerianCycles(); ``` # --solutions-- ```js // solution required ```