--- title: Linear Regression localeTitle: Линейная регрессия --- ## Линейная регрессия Линейная регрессия помогает нам прогнозировать оценку переменной X из оценок по другим переменным Y. Когда переменные Y нанесены на график, линейная регрессия находит наиболее подходящую прямую линию через точки. Лучшая линия называется регрессионной линией. [Онлайн-симулятор линейной регрессии](https://www.mladdict.com/linear-regression-simulator) В Python: ```py #Price of wheat/kg and the average price of bread wheat_and_bread = [[0.5,5],[0.6,5.5],[0.8,6],[1.1,6.8],[1.4,7]] def step_gradient(b_current, m_current, points, learningRate): b_gradient = 0 m_gradient = 0 N = float(len(points)) for i in range(0, len(points)): x = points[i][0] y = points[i][1] b_gradient += -(2/N) * (y - ((m_current * x) + b_current)) m_gradient += -(2/N) * x * (y - ((m_current * x) + b_current)) new_b = b_current - (learningRate * b_gradient) new_m = m_current - (learningRate * m_gradient) return [new_b, new_m] def gradient_descent_runner(points, starting_b, starting_m, learning_rate, num_iterations): b = starting_b m = starting_m for i in range(num_iterations): b, m = step_gradient(b, m, points, learning_rate) return [b, m] gradient_descent_runner(wheat_and_bread, 1, 1, 0.01, 100) ``` Пример кода из [этой статьи](http://blog.floydhub.com/coding-the-history-of-deep-learning/) . Это также объясняет градиентный спуск и другие важные понятия для глубокого обучения. Важно отметить, что не вся линейная регрессия выполняется с градиентным спуском. Нормальное уравнение можно также использовать для нахождения коэффициентов линейной регрессии, однако это использует умножение матриц и поэтому может потребовать много времени для использования более чем для 100 000 или 100 000 экземпляров. В Python: Применяйте непосредственно, используя библиотеку scikit, делая линейную регрессию простой в использовании даже на больших наборах данных. ```py import pandas as pd from sklearn.cross_validation import train_test_split from sklearn.linear_model import LinearRegression as lr train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') X = train.iloc[:, 0:4].values y = train.iloc[:, 4].values X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0) X_train model = lr() model.fit(X_train, y_train) print(model.score(X_train,y_train)) y_pred_class = model.predict(X_test) model.score(X_train,y_train) print(model.coef_) print(model.intercept_) # calculate accuracy from sklearn import metrics print(metrics.accuracy_score(y_test, y_pred_class)) ```