--- id: 5900f4201000cf542c50ff33 title: 'Problem 180: Rational zeros of a function of three variables' challengeType: 5 forumTopicId: 301816 dashedName: problem-180-rational-zeros-of-a-function-of-three-variables --- # --description-- For any integer $n$, consider the three functions $$\begin{align} & f_{1,n}(x,y,z) = x^{n + 1} + y^{n + 1} − z^{n + 1}\\\\ & f_{2,n}(x,y,z) = (xy + yz + zx) \times (x^{n - 1} + y^{n - 1} − z^{n - 1})\\\\ & f_{3,n}(x,y,z) = xyz \times (x^{n - 2} + y^{n - 2} − z^{n - 2}) \end{align}$$ and their combination $$\begin{align} & f_n(x,y,z) = f_{1,n}(x,y,z) + f_{2,n}(x,y,z) − f_{3,n}(x,y,z) \end{align}$$ We call $(x,y,z)$ a golden triple of order $k$ if $x$, $y$, and $z$ are all rational numbers of the form $\frac{a}{b}$ with $0 < a < b ≤ k$ and there is (at least) one integer $n$, so that $f_n(x,y,z) = 0$. Let $s(x,y,z) = x + y + z$. Let $t = \frac{u}{v}$ be the sum of all distinct $s(x,y,z)$ for all golden triples $(x,y,z)$ of order 35. All the $s(x,y,z)$ and $t$ must be in reduced form. Find $u + v$. # --hints-- `rationalZeros()` should return `285196020571078980`. ```js assert.strictEqual(rationalZeros(), 285196020571078980); ``` # --seed-- ## --seed-contents-- ```js function rationalZeros() { return true; } rationalZeros(); ``` # --solutions-- ```js // solution required ```