--- id: 5900f4571000cf542c50ff69 title: 'Problem 234: Semidivisible numbers' challengeType: 5 forumTopicId: 301878 dashedName: problem-234-semidivisible-numbers --- # --description-- For an integer $n ≥ 4$, we define the lower prime square root of $n$, denoted by $lps(n)$, as the $\text{largest prime} ≤ \sqrt{n}$ and the upper prime square root of $n$, $ups(n)$, as the $\text{smallest prime} ≥ \sqrt{n}$. So, for example, $lps(4) = 2 = ups(4)$, $lps(1000) = 31$, $ups(1000) = 37$. Let us call an integer $n ≥ 4$ semidivisible, if one of $lps(n)$ and $ups(n)$ divides $n$, but not both. The sum of the semidivisible numbers not exceeding 15 is 30, the numbers are 8, 10 and 12. 15 is not semidivisible because it is a multiple of both $lps(15) = 3$ and $ups(15) = 5$. As a further example, the sum of the 92 semidivisible numbers up to 1000 is 34825. What is the sum of all semidivisible numbers not exceeding 999966663333? # --hints-- `semidivisibleNumbers()` should return `1259187438574927000`. ```js assert.strictEqual(semidivisibleNumbers(), 1259187438574927000); ``` # --seed-- ## --seed-contents-- ```js function semidivisibleNumbers() { return true; } semidivisibleNumbers(); ``` # --solutions-- ```js // solution required ```