--- id: 5900f3ac1000cf542c50febf challengeType: 5 title: 'Problem 64: Odd period square roots' --- ## Description
All square roots are periodic when written as continued fractions and can be written in the form: √N = a0 + 1 a1 + 1 a2 + 1 a3 + ... For example, let us consider √23: √23 = 4 + √23 — 4 = 4 +  1  = 4 +  1 1√23—4 1 +  √23 – 37 If we continue we would get the following expansion: √23 = 4 + 1 1 + 1 3 + 1 1 + 1 8 + ... The process can be summarised as follows: a0 = 4, 1√23—4  =  √23+47  = 1 +  √23—37 a1 = 1, 7√23—3  =  7(√23+3)14  = 3 +  √23—32 a2 = 3, 2√23—3  =  2(√23+3)14  = 1 +  √23—47 a3 = 1, 7√23—4  =  7(√23+4)7  = 8 +  √23—4 a4 = 8, 1√23—4  =  √23+47  = 1 +  √23—37 a5 = 1, 7√23—3  =  7(√23+3)14  = 3 +  √23—32 a6 = 3, 2√23—3  =  2(√23+3)14  = 1 +  √23—47 a7 = 1, 7√23—4  =  7(√23+4)7  = 8 +  √23—4 It can be seen that the sequence is repeating. For conciseness, we use the notation √23 = [4;(1,3,1,8)], to indicate that the block (1,3,1,8) repeats indefinitely. The first ten continued fraction representations of (irrational) square roots are: √2=[1;(2)], period=1 √3=[1;(1,2)], period=2 √5=[2;(4)], period=1 √6=[2;(2,4)], period=2 √7=[2;(1,1,1,4)], period=4 √8=[2;(1,4)], period=2 √10=[3;(6)], period=1 √11=[3;(3,6)], period=2 √12= [3;(2,6)], period=2 √13=[3;(1,1,1,1,6)], period=5 Exactly four continued fractions, for N ≤ 13, have an odd period. How many continued fractions for N ≤ 10000 have an odd period?
## Instructions
## Tests
```yml tests: - text: euler64() should return 1322. testString: assert.strictEqual(euler64(), 1322, 'euler64() should return 1322.'); ```
## Challenge Seed
```js function euler64() { // Good luck! return true; } euler64(); ```
## Solution
```js // solution required ```