freeCodeCamp/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-65-convergents-of-e.md

3.3 KiB

id title challengeType forumTopicId dashedName
5900f3ad1000cf542c50fec0 Problem 65: Convergents of e 5 302177 problem-65-convergents-of-e

--description--

The square root of 2 can be written as an infinite continued fraction.

\\sqrt{2} = 1 + \\dfrac{1}{2 + \\dfrac{1}{2 + \\dfrac{1}{2 + \\dfrac{1}{2 + ...}}}}

The infinite continued fraction can be written, \\sqrt{2} = \[1; (2)] indicates that 2 repeats ad infinitum. In a similar way, \\sqrt{23} = \[4; (1, 3, 1, 8)]. It turns out that the sequence of partial values of continued fractions for square roots provide the best rational approximations. Let us consider the convergents for \\sqrt{2}.

1 + \\dfrac{1}{2} = \\dfrac{3}{2}\\\\ 1 + \\dfrac{1}{2 + \\dfrac{1}{2}} = \\dfrac{7}{5}\\\\ 1 + \\dfrac{1}{2 + \\dfrac{1}{2 + \\dfrac{1}{2}}} = \\dfrac{17}{12}\\\\ 1 + \\dfrac{1}{2 + \\dfrac{1}{2 + \\dfrac{1}{2 + \\dfrac{1}{2}}}} = \\dfrac{41}{29}

Hence the sequence of the first ten convergents for \\sqrt{2} are:

1, \\dfrac{3}{2}, \\dfrac{7}{5}, \\dfrac{17}{12}, \\dfrac{41}{29}, \\dfrac{99}{70}, \\dfrac{239}{169}, \\dfrac{577}{408}, \\dfrac{1393}{985}, \\dfrac{3363}{2378}, ...

What is most surprising is that the important mathematical constant, e = \[2; 1, 2, 1, 1, 4, 1, 1, 6, 1, ... , 1, 2k, 1, ...]. The first ten terms in the sequence of convergents for e are:

2, 3, \\dfrac{8}{3}, \\dfrac{11}{4}, \\dfrac{19}{7}, \\dfrac{87}{32}, \\dfrac{106}{39}, \\dfrac{193}{71}, \\dfrac{1264}{465}, \\dfrac{1457}{536}, ...

The sum of digits in the numerator of the 10th convergent is 1 + 4 + 5 + 7 = 17.

Find the sum of digits in the numerator of the nth convergent of the continued fraction for e.

--hints--

convergentsOfE(10) should return a number.

assert(typeof convergentsOfE(10) === 'number');

convergentsOfE(10) should return 17.

assert.strictEqual(convergentsOfE(10), 17);

convergentsOfE(30) should return 53.

assert.strictEqual(convergentsOfE(30), 53);

convergentsOfE(50) should return 91.

assert.strictEqual(convergentsOfE(50), 91);

convergentsOfE(70) should return 169.

assert.strictEqual(convergentsOfE(70), 169);

convergentsOfE(100) should return 272.

assert.strictEqual(convergentsOfE(100), 272);

--seed--

--seed-contents--

function convergentsOfE(n) {

  return true;
}

convergentsOfE(10);

--solutions--

function convergentsOfE(n) {
  function sumDigits(num) {
    let sum = 0n;
    while (num > 0) {
      sum += num % 10n;
      num = num / 10n;
    }
    return parseInt(sum);
  }

  // BigInt is needed for high convergents
  let convergents = [
    [2n, 1n],
    [3n, 1n]
  ];
  const multipliers = [1n, 1n, 2n];
  for (let i = 2; i < n; i++) {
    const [secondLastConvergent, lastConvergent] = convergents;
    const [secondLastNumerator, secondLastDenominator] = secondLastConvergent;
    const [lastNumerator, lastDenominator] = lastConvergent;
    const curMultiplier = multipliers[i % 3];

    const numerator = secondLastNumerator + curMultiplier * lastNumerator;
    const denominator = secondLastDenominator + curMultiplier * lastDenominator;

    convergents = [lastConvergent, [numerator, denominator]]
    if (i % 3 === 2) {
      multipliers[2] += 2n;
    }
  }
  return sumDigits(convergents[1][0]);
}