freeCodeCamp/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-289-eulerian-cycles.md

51 lines
1.5 KiB
Markdown

---
id: 5900f48d1000cf542c50ffa0
title: 'Problem 289: Eulerian Cycles'
challengeType: 5
forumTopicId: 301940
dashedName: problem-289-eulerian-cycles
---
# --description--
Let $C(x,y)$ be a circle passing through the points ($x$, $y$), ($x$, $y + 1$), ($x + 1$, $y$) and ($x + 1$, $y + 1$).
For positive integers $m$ and $n$, let $E(m,n)$ be a configuration which consists of the $m·n$ circles: { $C(x,y)$: $0 ≤ x < m$, $0 ≤ y < n$, $x$ and $y$ are integers }
An Eulerian cycle on $E(m,n)$ is a closed path that passes through each arc exactly once. Many such paths are possible on $E(m,n)$, but we are only interested in those which are not self-crossing: A non-crossing path just touches itself at lattice points, but it never crosses itself.
The image below shows $E(3,3)$ and an example of an Eulerian non-crossing path.
<img class="img-responsive center-block" alt="Eulerian cycle E(3, 3) and Eulerian non-crossing path" src="https://cdn.freecodecamp.org/curriculum/project-euler/eulerian-cycles.gif" style="background-color: white; padding: 10px;">
Let $L(m,n)$ be the number of Eulerian non-crossing paths on $E(m,n)$. For example, $L(1,2) = 2$, $L(2,2) = 37$ and $L(3,3) = 104290$.
Find $L(6,10)\bmod {10}^{10}$.
# --hints--
`eulerianCycles()` should return `6567944538`.
```js
assert.strictEqual(eulerianCycles(), 6567944538);
```
# --seed--
## --seed-contents--
```js
function eulerianCycles() {
return true;
}
eulerianCycles();
```
# --solutions--
```js
// solution required
```